You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							3997 lines
						
					
					
						
							125 KiB
						
					
					
				
			
		
		
	
	
							3997 lines
						
					
					
						
							125 KiB
						
					
					
				/* pako 1.0.11 nodeca/pako */(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.pako = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
 | 
						|
var TYPED_OK =  (typeof Uint8Array !== 'undefined') && | 
						|
                (typeof Uint16Array !== 'undefined') && | 
						|
                (typeof Int32Array !== 'undefined'); | 
						|
 | 
						|
function _has(obj, key) { | 
						|
  return Object.prototype.hasOwnProperty.call(obj, key); | 
						|
} | 
						|
 | 
						|
exports.assign = function (obj /*from1, from2, from3, ...*/) { | 
						|
  var sources = Array.prototype.slice.call(arguments, 1); | 
						|
  while (sources.length) { | 
						|
    var source = sources.shift(); | 
						|
    if (!source) { continue; } | 
						|
 | 
						|
    if (typeof source !== 'object') { | 
						|
      throw new TypeError(source + 'must be non-object'); | 
						|
    } | 
						|
 | 
						|
    for (var p in source) { | 
						|
      if (_has(source, p)) { | 
						|
        obj[p] = source[p]; | 
						|
      } | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  return obj; | 
						|
}; | 
						|
 | 
						|
 | 
						|
// reduce buffer size, avoiding mem copy | 
						|
exports.shrinkBuf = function (buf, size) { | 
						|
  if (buf.length === size) { return buf; } | 
						|
  if (buf.subarray) { return buf.subarray(0, size); } | 
						|
  buf.length = size; | 
						|
  return buf; | 
						|
}; | 
						|
 | 
						|
 | 
						|
var fnTyped = { | 
						|
  arraySet: function (dest, src, src_offs, len, dest_offs) { | 
						|
    if (src.subarray && dest.subarray) { | 
						|
      dest.set(src.subarray(src_offs, src_offs + len), dest_offs); | 
						|
      return; | 
						|
    } | 
						|
    // Fallback to ordinary array | 
						|
    for (var i = 0; i < len; i++) { | 
						|
      dest[dest_offs + i] = src[src_offs + i]; | 
						|
    } | 
						|
  }, | 
						|
  // Join array of chunks to single array. | 
						|
  flattenChunks: function (chunks) { | 
						|
    var i, l, len, pos, chunk, result; | 
						|
 | 
						|
    // calculate data length | 
						|
    len = 0; | 
						|
    for (i = 0, l = chunks.length; i < l; i++) { | 
						|
      len += chunks[i].length; | 
						|
    } | 
						|
 | 
						|
    // join chunks | 
						|
    result = new Uint8Array(len); | 
						|
    pos = 0; | 
						|
    for (i = 0, l = chunks.length; i < l; i++) { | 
						|
      chunk = chunks[i]; | 
						|
      result.set(chunk, pos); | 
						|
      pos += chunk.length; | 
						|
    } | 
						|
 | 
						|
    return result; | 
						|
  } | 
						|
}; | 
						|
 | 
						|
var fnUntyped = { | 
						|
  arraySet: function (dest, src, src_offs, len, dest_offs) { | 
						|
    for (var i = 0; i < len; i++) { | 
						|
      dest[dest_offs + i] = src[src_offs + i]; | 
						|
    } | 
						|
  }, | 
						|
  // Join array of chunks to single array. | 
						|
  flattenChunks: function (chunks) { | 
						|
    return [].concat.apply([], chunks); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
 | 
						|
// Enable/Disable typed arrays use, for testing | 
						|
// | 
						|
exports.setTyped = function (on) { | 
						|
  if (on) { | 
						|
    exports.Buf8  = Uint8Array; | 
						|
    exports.Buf16 = Uint16Array; | 
						|
    exports.Buf32 = Int32Array; | 
						|
    exports.assign(exports, fnTyped); | 
						|
  } else { | 
						|
    exports.Buf8  = Array; | 
						|
    exports.Buf16 = Array; | 
						|
    exports.Buf32 = Array; | 
						|
    exports.assign(exports, fnUntyped); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
exports.setTyped(TYPED_OK); | 
						|
 | 
						|
},{}],2:[function(require,module,exports){ | 
						|
// String encode/decode helpers | 
						|
'use strict'; | 
						|
 | 
						|
 | 
						|
var utils = require('./common'); | 
						|
 | 
						|
 | 
						|
// Quick check if we can use fast array to bin string conversion | 
						|
// | 
						|
// - apply(Array) can fail on Android 2.2 | 
						|
// - apply(Uint8Array) can fail on iOS 5.1 Safari | 
						|
// | 
						|
var STR_APPLY_OK = true; | 
						|
var STR_APPLY_UIA_OK = true; | 
						|
 | 
						|
try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; } | 
						|
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; } | 
						|
 | 
						|
 | 
						|
// Table with utf8 lengths (calculated by first byte of sequence) | 
						|
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, | 
						|
// because max possible codepoint is 0x10ffff | 
						|
var _utf8len = new utils.Buf8(256); | 
						|
for (var q = 0; q < 256; q++) { | 
						|
  _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1); | 
						|
} | 
						|
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start | 
						|
 | 
						|
 | 
						|
// convert string to array (typed, when possible) | 
						|
exports.string2buf = function (str) { | 
						|
  var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; | 
						|
 | 
						|
  // count binary size | 
						|
  for (m_pos = 0; m_pos < str_len; m_pos++) { | 
						|
    c = str.charCodeAt(m_pos); | 
						|
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { | 
						|
      c2 = str.charCodeAt(m_pos + 1); | 
						|
      if ((c2 & 0xfc00) === 0xdc00) { | 
						|
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); | 
						|
        m_pos++; | 
						|
      } | 
						|
    } | 
						|
    buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; | 
						|
  } | 
						|
 | 
						|
  // allocate buffer | 
						|
  buf = new utils.Buf8(buf_len); | 
						|
 | 
						|
  // convert | 
						|
  for (i = 0, m_pos = 0; i < buf_len; m_pos++) { | 
						|
    c = str.charCodeAt(m_pos); | 
						|
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { | 
						|
      c2 = str.charCodeAt(m_pos + 1); | 
						|
      if ((c2 & 0xfc00) === 0xdc00) { | 
						|
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); | 
						|
        m_pos++; | 
						|
      } | 
						|
    } | 
						|
    if (c < 0x80) { | 
						|
      /* one byte */ | 
						|
      buf[i++] = c; | 
						|
    } else if (c < 0x800) { | 
						|
      /* two bytes */ | 
						|
      buf[i++] = 0xC0 | (c >>> 6); | 
						|
      buf[i++] = 0x80 | (c & 0x3f); | 
						|
    } else if (c < 0x10000) { | 
						|
      /* three bytes */ | 
						|
      buf[i++] = 0xE0 | (c >>> 12); | 
						|
      buf[i++] = 0x80 | (c >>> 6 & 0x3f); | 
						|
      buf[i++] = 0x80 | (c & 0x3f); | 
						|
    } else { | 
						|
      /* four bytes */ | 
						|
      buf[i++] = 0xf0 | (c >>> 18); | 
						|
      buf[i++] = 0x80 | (c >>> 12 & 0x3f); | 
						|
      buf[i++] = 0x80 | (c >>> 6 & 0x3f); | 
						|
      buf[i++] = 0x80 | (c & 0x3f); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  return buf; | 
						|
}; | 
						|
 | 
						|
// Helper (used in 2 places) | 
						|
function buf2binstring(buf, len) { | 
						|
  // On Chrome, the arguments in a function call that are allowed is `65534`. | 
						|
  // If the length of the buffer is smaller than that, we can use this optimization, | 
						|
  // otherwise we will take a slower path. | 
						|
  if (len < 65534) { | 
						|
    if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) { | 
						|
      return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len)); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  var result = ''; | 
						|
  for (var i = 0; i < len; i++) { | 
						|
    result += String.fromCharCode(buf[i]); | 
						|
  } | 
						|
  return result; | 
						|
} | 
						|
 | 
						|
 | 
						|
// Convert byte array to binary string | 
						|
exports.buf2binstring = function (buf) { | 
						|
  return buf2binstring(buf, buf.length); | 
						|
}; | 
						|
 | 
						|
 | 
						|
// Convert binary string (typed, when possible) | 
						|
exports.binstring2buf = function (str) { | 
						|
  var buf = new utils.Buf8(str.length); | 
						|
  for (var i = 0, len = buf.length; i < len; i++) { | 
						|
    buf[i] = str.charCodeAt(i); | 
						|
  } | 
						|
  return buf; | 
						|
}; | 
						|
 | 
						|
 | 
						|
// convert array to string | 
						|
exports.buf2string = function (buf, max) { | 
						|
  var i, out, c, c_len; | 
						|
  var len = max || buf.length; | 
						|
 | 
						|
  // Reserve max possible length (2 words per char) | 
						|
  // NB: by unknown reasons, Array is significantly faster for | 
						|
  //     String.fromCharCode.apply than Uint16Array. | 
						|
  var utf16buf = new Array(len * 2); | 
						|
 | 
						|
  for (out = 0, i = 0; i < len;) { | 
						|
    c = buf[i++]; | 
						|
    // quick process ascii | 
						|
    if (c < 0x80) { utf16buf[out++] = c; continue; } | 
						|
 | 
						|
    c_len = _utf8len[c]; | 
						|
    // skip 5 & 6 byte codes | 
						|
    if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; } | 
						|
 | 
						|
    // apply mask on first byte | 
						|
    c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; | 
						|
    // join the rest | 
						|
    while (c_len > 1 && i < len) { | 
						|
      c = (c << 6) | (buf[i++] & 0x3f); | 
						|
      c_len--; | 
						|
    } | 
						|
 | 
						|
    // terminated by end of string? | 
						|
    if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } | 
						|
 | 
						|
    if (c < 0x10000) { | 
						|
      utf16buf[out++] = c; | 
						|
    } else { | 
						|
      c -= 0x10000; | 
						|
      utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); | 
						|
      utf16buf[out++] = 0xdc00 | (c & 0x3ff); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  return buf2binstring(utf16buf, out); | 
						|
}; | 
						|
 | 
						|
 | 
						|
// Calculate max possible position in utf8 buffer, | 
						|
// that will not break sequence. If that's not possible | 
						|
// - (very small limits) return max size as is. | 
						|
// | 
						|
// buf[] - utf8 bytes array | 
						|
// max   - length limit (mandatory); | 
						|
exports.utf8border = function (buf, max) { | 
						|
  var pos; | 
						|
 | 
						|
  max = max || buf.length; | 
						|
  if (max > buf.length) { max = buf.length; } | 
						|
 | 
						|
  // go back from last position, until start of sequence found | 
						|
  pos = max - 1; | 
						|
  while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } | 
						|
 | 
						|
  // Very small and broken sequence, | 
						|
  // return max, because we should return something anyway. | 
						|
  if (pos < 0) { return max; } | 
						|
 | 
						|
  // If we came to start of buffer - that means buffer is too small, | 
						|
  // return max too. | 
						|
  if (pos === 0) { return max; } | 
						|
 | 
						|
  return (pos + _utf8len[buf[pos]] > max) ? pos : max; | 
						|
}; | 
						|
 | 
						|
},{"./common":1}],3:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// Note: adler32 takes 12% for level 0 and 2% for level 6. | 
						|
// It isn't worth it to make additional optimizations as in original. | 
						|
// Small size is preferable. | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
function adler32(adler, buf, len, pos) { | 
						|
  var s1 = (adler & 0xffff) |0, | 
						|
      s2 = ((adler >>> 16) & 0xffff) |0, | 
						|
      n = 0; | 
						|
 | 
						|
  while (len !== 0) { | 
						|
    // Set limit ~ twice less than 5552, to keep | 
						|
    // s2 in 31-bits, because we force signed ints. | 
						|
    // in other case %= will fail. | 
						|
    n = len > 2000 ? 2000 : len; | 
						|
    len -= n; | 
						|
 | 
						|
    do { | 
						|
      s1 = (s1 + buf[pos++]) |0; | 
						|
      s2 = (s2 + s1) |0; | 
						|
    } while (--n); | 
						|
 | 
						|
    s1 %= 65521; | 
						|
    s2 %= 65521; | 
						|
  } | 
						|
 | 
						|
  return (s1 | (s2 << 16)) |0; | 
						|
} | 
						|
 | 
						|
 | 
						|
module.exports = adler32; | 
						|
 | 
						|
},{}],4:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// Note: we can't get significant speed boost here. | 
						|
// So write code to minimize size - no pregenerated tables | 
						|
// and array tools dependencies. | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
// Use ordinary array, since untyped makes no boost here | 
						|
function makeTable() { | 
						|
  var c, table = []; | 
						|
 | 
						|
  for (var n = 0; n < 256; n++) { | 
						|
    c = n; | 
						|
    for (var k = 0; k < 8; k++) { | 
						|
      c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); | 
						|
    } | 
						|
    table[n] = c; | 
						|
  } | 
						|
 | 
						|
  return table; | 
						|
} | 
						|
 | 
						|
// Create table on load. Just 255 signed longs. Not a problem. | 
						|
var crcTable = makeTable(); | 
						|
 | 
						|
 | 
						|
function crc32(crc, buf, len, pos) { | 
						|
  var t = crcTable, | 
						|
      end = pos + len; | 
						|
 | 
						|
  crc ^= -1; | 
						|
 | 
						|
  for (var i = pos; i < end; i++) { | 
						|
    crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; | 
						|
  } | 
						|
 | 
						|
  return (crc ^ (-1)); // >>> 0; | 
						|
} | 
						|
 | 
						|
 | 
						|
module.exports = crc32; | 
						|
 | 
						|
},{}],5:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
var utils   = require('../utils/common'); | 
						|
var trees   = require('./trees'); | 
						|
var adler32 = require('./adler32'); | 
						|
var crc32   = require('./crc32'); | 
						|
var msg     = require('./messages'); | 
						|
 | 
						|
/* Public constants ==========================================================*/ | 
						|
/* ===========================================================================*/ | 
						|
 | 
						|
 | 
						|
/* Allowed flush values; see deflate() and inflate() below for details */ | 
						|
var Z_NO_FLUSH      = 0; | 
						|
var Z_PARTIAL_FLUSH = 1; | 
						|
//var Z_SYNC_FLUSH    = 2; | 
						|
var Z_FULL_FLUSH    = 3; | 
						|
var Z_FINISH        = 4; | 
						|
var Z_BLOCK         = 5; | 
						|
//var Z_TREES         = 6; | 
						|
 | 
						|
 | 
						|
/* Return codes for the compression/decompression functions. Negative values | 
						|
 * are errors, positive values are used for special but normal events. | 
						|
 */ | 
						|
var Z_OK            = 0; | 
						|
var Z_STREAM_END    = 1; | 
						|
//var Z_NEED_DICT     = 2; | 
						|
//var Z_ERRNO         = -1; | 
						|
var Z_STREAM_ERROR  = -2; | 
						|
var Z_DATA_ERROR    = -3; | 
						|
//var Z_MEM_ERROR     = -4; | 
						|
var Z_BUF_ERROR     = -5; | 
						|
//var Z_VERSION_ERROR = -6; | 
						|
 | 
						|
 | 
						|
/* compression levels */ | 
						|
//var Z_NO_COMPRESSION      = 0; | 
						|
//var Z_BEST_SPEED          = 1; | 
						|
//var Z_BEST_COMPRESSION    = 9; | 
						|
var Z_DEFAULT_COMPRESSION = -1; | 
						|
 | 
						|
 | 
						|
var Z_FILTERED            = 1; | 
						|
var Z_HUFFMAN_ONLY        = 2; | 
						|
var Z_RLE                 = 3; | 
						|
var Z_FIXED               = 4; | 
						|
var Z_DEFAULT_STRATEGY    = 0; | 
						|
 | 
						|
/* Possible values of the data_type field (though see inflate()) */ | 
						|
//var Z_BINARY              = 0; | 
						|
//var Z_TEXT                = 1; | 
						|
//var Z_ASCII               = 1; // = Z_TEXT | 
						|
var Z_UNKNOWN             = 2; | 
						|
 | 
						|
 | 
						|
/* The deflate compression method */ | 
						|
var Z_DEFLATED  = 8; | 
						|
 | 
						|
/*============================================================================*/ | 
						|
 | 
						|
 | 
						|
var MAX_MEM_LEVEL = 9; | 
						|
/* Maximum value for memLevel in deflateInit2 */ | 
						|
var MAX_WBITS = 15; | 
						|
/* 32K LZ77 window */ | 
						|
var DEF_MEM_LEVEL = 8; | 
						|
 | 
						|
 | 
						|
var LENGTH_CODES  = 29; | 
						|
/* number of length codes, not counting the special END_BLOCK code */ | 
						|
var LITERALS      = 256; | 
						|
/* number of literal bytes 0..255 */ | 
						|
var L_CODES       = LITERALS + 1 + LENGTH_CODES; | 
						|
/* number of Literal or Length codes, including the END_BLOCK code */ | 
						|
var D_CODES       = 30; | 
						|
/* number of distance codes */ | 
						|
var BL_CODES      = 19; | 
						|
/* number of codes used to transfer the bit lengths */ | 
						|
var HEAP_SIZE     = 2 * L_CODES + 1; | 
						|
/* maximum heap size */ | 
						|
var MAX_BITS  = 15; | 
						|
/* All codes must not exceed MAX_BITS bits */ | 
						|
 | 
						|
var MIN_MATCH = 3; | 
						|
var MAX_MATCH = 258; | 
						|
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | 
						|
 | 
						|
var PRESET_DICT = 0x20; | 
						|
 | 
						|
var INIT_STATE = 42; | 
						|
var EXTRA_STATE = 69; | 
						|
var NAME_STATE = 73; | 
						|
var COMMENT_STATE = 91; | 
						|
var HCRC_STATE = 103; | 
						|
var BUSY_STATE = 113; | 
						|
var FINISH_STATE = 666; | 
						|
 | 
						|
var BS_NEED_MORE      = 1; /* block not completed, need more input or more output */ | 
						|
var BS_BLOCK_DONE     = 2; /* block flush performed */ | 
						|
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ | 
						|
var BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */ | 
						|
 | 
						|
var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. | 
						|
 | 
						|
function err(strm, errorCode) { | 
						|
  strm.msg = msg[errorCode]; | 
						|
  return errorCode; | 
						|
} | 
						|
 | 
						|
function rank(f) { | 
						|
  return ((f) << 1) - ((f) > 4 ? 9 : 0); | 
						|
} | 
						|
 | 
						|
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | 
						|
 | 
						|
 | 
						|
/* ========================================================================= | 
						|
 * Flush as much pending output as possible. All deflate() output goes | 
						|
 * through this function so some applications may wish to modify it | 
						|
 * to avoid allocating a large strm->output buffer and copying into it. | 
						|
 * (See also read_buf()). | 
						|
 */ | 
						|
function flush_pending(strm) { | 
						|
  var s = strm.state; | 
						|
 | 
						|
  //_tr_flush_bits(s); | 
						|
  var len = s.pending; | 
						|
  if (len > strm.avail_out) { | 
						|
    len = strm.avail_out; | 
						|
  } | 
						|
  if (len === 0) { return; } | 
						|
 | 
						|
  utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); | 
						|
  strm.next_out += len; | 
						|
  s.pending_out += len; | 
						|
  strm.total_out += len; | 
						|
  strm.avail_out -= len; | 
						|
  s.pending -= len; | 
						|
  if (s.pending === 0) { | 
						|
    s.pending_out = 0; | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
function flush_block_only(s, last) { | 
						|
  trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); | 
						|
  s.block_start = s.strstart; | 
						|
  flush_pending(s.strm); | 
						|
} | 
						|
 | 
						|
 | 
						|
function put_byte(s, b) { | 
						|
  s.pending_buf[s.pending++] = b; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* ========================================================================= | 
						|
 * Put a short in the pending buffer. The 16-bit value is put in MSB order. | 
						|
 * IN assertion: the stream state is correct and there is enough room in | 
						|
 * pending_buf. | 
						|
 */ | 
						|
function putShortMSB(s, b) { | 
						|
//  put_byte(s, (Byte)(b >> 8)); | 
						|
//  put_byte(s, (Byte)(b & 0xff)); | 
						|
  s.pending_buf[s.pending++] = (b >>> 8) & 0xff; | 
						|
  s.pending_buf[s.pending++] = b & 0xff; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Read a new buffer from the current input stream, update the adler32 | 
						|
 * and total number of bytes read.  All deflate() input goes through | 
						|
 * this function so some applications may wish to modify it to avoid | 
						|
 * allocating a large strm->input buffer and copying from it. | 
						|
 * (See also flush_pending()). | 
						|
 */ | 
						|
function read_buf(strm, buf, start, size) { | 
						|
  var len = strm.avail_in; | 
						|
 | 
						|
  if (len > size) { len = size; } | 
						|
  if (len === 0) { return 0; } | 
						|
 | 
						|
  strm.avail_in -= len; | 
						|
 | 
						|
  // zmemcpy(buf, strm->next_in, len); | 
						|
  utils.arraySet(buf, strm.input, strm.next_in, len, start); | 
						|
  if (strm.state.wrap === 1) { | 
						|
    strm.adler = adler32(strm.adler, buf, len, start); | 
						|
  } | 
						|
 | 
						|
  else if (strm.state.wrap === 2) { | 
						|
    strm.adler = crc32(strm.adler, buf, len, start); | 
						|
  } | 
						|
 | 
						|
  strm.next_in += len; | 
						|
  strm.total_in += len; | 
						|
 | 
						|
  return len; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Set match_start to the longest match starting at the given string and | 
						|
 * return its length. Matches shorter or equal to prev_length are discarded, | 
						|
 * in which case the result is equal to prev_length and match_start is | 
						|
 * garbage. | 
						|
 * IN assertions: cur_match is the head of the hash chain for the current | 
						|
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | 
						|
 * OUT assertion: the match length is not greater than s->lookahead. | 
						|
 */ | 
						|
function longest_match(s, cur_match) { | 
						|
  var chain_length = s.max_chain_length;      /* max hash chain length */ | 
						|
  var scan = s.strstart; /* current string */ | 
						|
  var match;                       /* matched string */ | 
						|
  var len;                           /* length of current match */ | 
						|
  var best_len = s.prev_length;              /* best match length so far */ | 
						|
  var nice_match = s.nice_match;             /* stop if match long enough */ | 
						|
  var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? | 
						|
      s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; | 
						|
 | 
						|
  var _win = s.window; // shortcut | 
						|
 | 
						|
  var wmask = s.w_mask; | 
						|
  var prev  = s.prev; | 
						|
 | 
						|
  /* Stop when cur_match becomes <= limit. To simplify the code, | 
						|
   * we prevent matches with the string of window index 0. | 
						|
   */ | 
						|
 | 
						|
  var strend = s.strstart + MAX_MATCH; | 
						|
  var scan_end1  = _win[scan + best_len - 1]; | 
						|
  var scan_end   = _win[scan + best_len]; | 
						|
 | 
						|
  /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | 
						|
   * It is easy to get rid of this optimization if necessary. | 
						|
   */ | 
						|
  // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | 
						|
 | 
						|
  /* Do not waste too much time if we already have a good match: */ | 
						|
  if (s.prev_length >= s.good_match) { | 
						|
    chain_length >>= 2; | 
						|
  } | 
						|
  /* Do not look for matches beyond the end of the input. This is necessary | 
						|
   * to make deflate deterministic. | 
						|
   */ | 
						|
  if (nice_match > s.lookahead) { nice_match = s.lookahead; } | 
						|
 | 
						|
  // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | 
						|
 | 
						|
  do { | 
						|
    // Assert(cur_match < s->strstart, "no future"); | 
						|
    match = cur_match; | 
						|
 | 
						|
    /* Skip to next match if the match length cannot increase | 
						|
     * or if the match length is less than 2.  Note that the checks below | 
						|
     * for insufficient lookahead only occur occasionally for performance | 
						|
     * reasons.  Therefore uninitialized memory will be accessed, and | 
						|
     * conditional jumps will be made that depend on those values. | 
						|
     * However the length of the match is limited to the lookahead, so | 
						|
     * the output of deflate is not affected by the uninitialized values. | 
						|
     */ | 
						|
 | 
						|
    if (_win[match + best_len]     !== scan_end  || | 
						|
        _win[match + best_len - 1] !== scan_end1 || | 
						|
        _win[match]                !== _win[scan] || | 
						|
        _win[++match]              !== _win[scan + 1]) { | 
						|
      continue; | 
						|
    } | 
						|
 | 
						|
    /* The check at best_len-1 can be removed because it will be made | 
						|
     * again later. (This heuristic is not always a win.) | 
						|
     * It is not necessary to compare scan[2] and match[2] since they | 
						|
     * are always equal when the other bytes match, given that | 
						|
     * the hash keys are equal and that HASH_BITS >= 8. | 
						|
     */ | 
						|
    scan += 2; | 
						|
    match++; | 
						|
    // Assert(*scan == *match, "match[2]?"); | 
						|
 | 
						|
    /* We check for insufficient lookahead only every 8th comparison; | 
						|
     * the 256th check will be made at strstart+258. | 
						|
     */ | 
						|
    do { | 
						|
      /*jshint noempty:false*/ | 
						|
    } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | 
						|
             scan < strend); | 
						|
 | 
						|
    // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | 
						|
 | 
						|
    len = MAX_MATCH - (strend - scan); | 
						|
    scan = strend - MAX_MATCH; | 
						|
 | 
						|
    if (len > best_len) { | 
						|
      s.match_start = cur_match; | 
						|
      best_len = len; | 
						|
      if (len >= nice_match) { | 
						|
        break; | 
						|
      } | 
						|
      scan_end1  = _win[scan + best_len - 1]; | 
						|
      scan_end   = _win[scan + best_len]; | 
						|
    } | 
						|
  } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); | 
						|
 | 
						|
  if (best_len <= s.lookahead) { | 
						|
    return best_len; | 
						|
  } | 
						|
  return s.lookahead; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Fill the window when the lookahead becomes insufficient. | 
						|
 * Updates strstart and lookahead. | 
						|
 * | 
						|
 * IN assertion: lookahead < MIN_LOOKAHEAD | 
						|
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | 
						|
 *    At least one byte has been read, or avail_in == 0; reads are | 
						|
 *    performed for at least two bytes (required for the zip translate_eol | 
						|
 *    option -- not supported here). | 
						|
 */ | 
						|
function fill_window(s) { | 
						|
  var _w_size = s.w_size; | 
						|
  var p, n, m, more, str; | 
						|
 | 
						|
  //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | 
						|
 | 
						|
  do { | 
						|
    more = s.window_size - s.lookahead - s.strstart; | 
						|
 | 
						|
    // JS ints have 32 bit, block below not needed | 
						|
    /* Deal with !@#$% 64K limit: */ | 
						|
    //if (sizeof(int) <= 2) { | 
						|
    //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | 
						|
    //        more = wsize; | 
						|
    // | 
						|
    //  } else if (more == (unsigned)(-1)) { | 
						|
    //        /* Very unlikely, but possible on 16 bit machine if | 
						|
    //         * strstart == 0 && lookahead == 1 (input done a byte at time) | 
						|
    //         */ | 
						|
    //        more--; | 
						|
    //    } | 
						|
    //} | 
						|
 | 
						|
 | 
						|
    /* If the window is almost full and there is insufficient lookahead, | 
						|
     * move the upper half to the lower one to make room in the upper half. | 
						|
     */ | 
						|
    if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { | 
						|
 | 
						|
      utils.arraySet(s.window, s.window, _w_size, _w_size, 0); | 
						|
      s.match_start -= _w_size; | 
						|
      s.strstart -= _w_size; | 
						|
      /* we now have strstart >= MAX_DIST */ | 
						|
      s.block_start -= _w_size; | 
						|
 | 
						|
      /* Slide the hash table (could be avoided with 32 bit values | 
						|
       at the expense of memory usage). We slide even when level == 0 | 
						|
       to keep the hash table consistent if we switch back to level > 0 | 
						|
       later. (Using level 0 permanently is not an optimal usage of | 
						|
       zlib, so we don't care about this pathological case.) | 
						|
       */ | 
						|
 | 
						|
      n = s.hash_size; | 
						|
      p = n; | 
						|
      do { | 
						|
        m = s.head[--p]; | 
						|
        s.head[p] = (m >= _w_size ? m - _w_size : 0); | 
						|
      } while (--n); | 
						|
 | 
						|
      n = _w_size; | 
						|
      p = n; | 
						|
      do { | 
						|
        m = s.prev[--p]; | 
						|
        s.prev[p] = (m >= _w_size ? m - _w_size : 0); | 
						|
        /* If n is not on any hash chain, prev[n] is garbage but | 
						|
         * its value will never be used. | 
						|
         */ | 
						|
      } while (--n); | 
						|
 | 
						|
      more += _w_size; | 
						|
    } | 
						|
    if (s.strm.avail_in === 0) { | 
						|
      break; | 
						|
    } | 
						|
 | 
						|
    /* If there was no sliding: | 
						|
     *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | 
						|
     *    more == window_size - lookahead - strstart | 
						|
     * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | 
						|
     * => more >= window_size - 2*WSIZE + 2 | 
						|
     * In the BIG_MEM or MMAP case (not yet supported), | 
						|
     *   window_size == input_size + MIN_LOOKAHEAD  && | 
						|
     *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | 
						|
     * Otherwise, window_size == 2*WSIZE so more >= 2. | 
						|
     * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | 
						|
     */ | 
						|
    //Assert(more >= 2, "more < 2"); | 
						|
    n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); | 
						|
    s.lookahead += n; | 
						|
 | 
						|
    /* Initialize the hash value now that we have some input: */ | 
						|
    if (s.lookahead + s.insert >= MIN_MATCH) { | 
						|
      str = s.strstart - s.insert; | 
						|
      s.ins_h = s.window[str]; | 
						|
 | 
						|
      /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ | 
						|
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; | 
						|
//#if MIN_MATCH != 3 | 
						|
//        Call update_hash() MIN_MATCH-3 more times | 
						|
//#endif | 
						|
      while (s.insert) { | 
						|
        /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | 
						|
        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | 
						|
 | 
						|
        s.prev[str & s.w_mask] = s.head[s.ins_h]; | 
						|
        s.head[s.ins_h] = str; | 
						|
        str++; | 
						|
        s.insert--; | 
						|
        if (s.lookahead + s.insert < MIN_MATCH) { | 
						|
          break; | 
						|
        } | 
						|
      } | 
						|
    } | 
						|
    /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | 
						|
     * but this is not important since only literal bytes will be emitted. | 
						|
     */ | 
						|
 | 
						|
  } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); | 
						|
 | 
						|
  /* If the WIN_INIT bytes after the end of the current data have never been | 
						|
   * written, then zero those bytes in order to avoid memory check reports of | 
						|
   * the use of uninitialized (or uninitialised as Julian writes) bytes by | 
						|
   * the longest match routines.  Update the high water mark for the next | 
						|
   * time through here.  WIN_INIT is set to MAX_MATCH since the longest match | 
						|
   * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | 
						|
   */ | 
						|
//  if (s.high_water < s.window_size) { | 
						|
//    var curr = s.strstart + s.lookahead; | 
						|
//    var init = 0; | 
						|
// | 
						|
//    if (s.high_water < curr) { | 
						|
//      /* Previous high water mark below current data -- zero WIN_INIT | 
						|
//       * bytes or up to end of window, whichever is less. | 
						|
//       */ | 
						|
//      init = s.window_size - curr; | 
						|
//      if (init > WIN_INIT) | 
						|
//        init = WIN_INIT; | 
						|
//      zmemzero(s->window + curr, (unsigned)init); | 
						|
//      s->high_water = curr + init; | 
						|
//    } | 
						|
//    else if (s->high_water < (ulg)curr + WIN_INIT) { | 
						|
//      /* High water mark at or above current data, but below current data | 
						|
//       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | 
						|
//       * to end of window, whichever is less. | 
						|
//       */ | 
						|
//      init = (ulg)curr + WIN_INIT - s->high_water; | 
						|
//      if (init > s->window_size - s->high_water) | 
						|
//        init = s->window_size - s->high_water; | 
						|
//      zmemzero(s->window + s->high_water, (unsigned)init); | 
						|
//      s->high_water += init; | 
						|
//    } | 
						|
//  } | 
						|
// | 
						|
//  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | 
						|
//    "not enough room for search"); | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Copy without compression as much as possible from the input stream, return | 
						|
 * the current block state. | 
						|
 * This function does not insert new strings in the dictionary since | 
						|
 * uncompressible data is probably not useful. This function is used | 
						|
 * only for the level=0 compression option. | 
						|
 * NOTE: this function should be optimized to avoid extra copying from | 
						|
 * window to pending_buf. | 
						|
 */ | 
						|
function deflate_stored(s, flush) { | 
						|
  /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | 
						|
   * to pending_buf_size, and each stored block has a 5 byte header: | 
						|
   */ | 
						|
  var max_block_size = 0xffff; | 
						|
 | 
						|
  if (max_block_size > s.pending_buf_size - 5) { | 
						|
    max_block_size = s.pending_buf_size - 5; | 
						|
  } | 
						|
 | 
						|
  /* Copy as much as possible from input to output: */ | 
						|
  for (;;) { | 
						|
    /* Fill the window as much as possible: */ | 
						|
    if (s.lookahead <= 1) { | 
						|
 | 
						|
      //Assert(s->strstart < s->w_size+MAX_DIST(s) || | 
						|
      //  s->block_start >= (long)s->w_size, "slide too late"); | 
						|
//      if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || | 
						|
//        s.block_start >= s.w_size)) { | 
						|
//        throw  new Error("slide too late"); | 
						|
//      } | 
						|
 | 
						|
      fill_window(s); | 
						|
      if (s.lookahead === 0 && flush === Z_NO_FLUSH) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
 | 
						|
      if (s.lookahead === 0) { | 
						|
        break; | 
						|
      } | 
						|
      /* flush the current block */ | 
						|
    } | 
						|
    //Assert(s->block_start >= 0L, "block gone"); | 
						|
//    if (s.block_start < 0) throw new Error("block gone"); | 
						|
 | 
						|
    s.strstart += s.lookahead; | 
						|
    s.lookahead = 0; | 
						|
 | 
						|
    /* Emit a stored block if pending_buf will be full: */ | 
						|
    var max_start = s.block_start + max_block_size; | 
						|
 | 
						|
    if (s.strstart === 0 || s.strstart >= max_start) { | 
						|
      /* strstart == 0 is possible when wraparound on 16-bit machine */ | 
						|
      s.lookahead = s.strstart - max_start; | 
						|
      s.strstart = max_start; | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
      flush_block_only(s, false); | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      /***/ | 
						|
 | 
						|
 | 
						|
    } | 
						|
    /* Flush if we may have to slide, otherwise block_start may become | 
						|
     * negative and the data will be gone: | 
						|
     */ | 
						|
    if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
      flush_block_only(s, false); | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      /***/ | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  s.insert = 0; | 
						|
 | 
						|
  if (flush === Z_FINISH) { | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/ | 
						|
    flush_block_only(s, true); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_FINISH_STARTED; | 
						|
    } | 
						|
    /***/ | 
						|
    return BS_FINISH_DONE; | 
						|
  } | 
						|
 | 
						|
  if (s.strstart > s.block_start) { | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
    flush_block_only(s, false); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_NEED_MORE; | 
						|
    } | 
						|
    /***/ | 
						|
  } | 
						|
 | 
						|
  return BS_NEED_MORE; | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Compress as much as possible from the input stream, return the current | 
						|
 * block state. | 
						|
 * This function does not perform lazy evaluation of matches and inserts | 
						|
 * new strings in the dictionary only for unmatched strings or for short | 
						|
 * matches. It is used only for the fast compression options. | 
						|
 */ | 
						|
function deflate_fast(s, flush) { | 
						|
  var hash_head;        /* head of the hash chain */ | 
						|
  var bflush;           /* set if current block must be flushed */ | 
						|
 | 
						|
  for (;;) { | 
						|
    /* Make sure that we always have enough lookahead, except | 
						|
     * at the end of the input file. We need MAX_MATCH bytes | 
						|
     * for the next match, plus MIN_MATCH bytes to insert the | 
						|
     * string following the next match. | 
						|
     */ | 
						|
    if (s.lookahead < MIN_LOOKAHEAD) { | 
						|
      fill_window(s); | 
						|
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      if (s.lookahead === 0) { | 
						|
        break; /* flush the current block */ | 
						|
      } | 
						|
    } | 
						|
 | 
						|
    /* Insert the string window[strstart .. strstart+2] in the | 
						|
     * dictionary, and set hash_head to the head of the hash chain: | 
						|
     */ | 
						|
    hash_head = 0/*NIL*/; | 
						|
    if (s.lookahead >= MIN_MATCH) { | 
						|
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/ | 
						|
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | 
						|
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | 
						|
      s.head[s.ins_h] = s.strstart; | 
						|
      /***/ | 
						|
    } | 
						|
 | 
						|
    /* Find the longest match, discarding those <= prev_length. | 
						|
     * At this point we have always match_length < MIN_MATCH | 
						|
     */ | 
						|
    if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { | 
						|
      /* To simplify the code, we prevent matches with the string | 
						|
       * of window index 0 (in particular we have to avoid a match | 
						|
       * of the string with itself at the start of the input file). | 
						|
       */ | 
						|
      s.match_length = longest_match(s, hash_head); | 
						|
      /* longest_match() sets match_start */ | 
						|
    } | 
						|
    if (s.match_length >= MIN_MATCH) { | 
						|
      // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only | 
						|
 | 
						|
      /*** _tr_tally_dist(s, s.strstart - s.match_start, | 
						|
                     s.match_length - MIN_MATCH, bflush); ***/ | 
						|
      bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); | 
						|
 | 
						|
      s.lookahead -= s.match_length; | 
						|
 | 
						|
      /* Insert new strings in the hash table only if the match length | 
						|
       * is not too large. This saves time but degrades compression. | 
						|
       */ | 
						|
      if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { | 
						|
        s.match_length--; /* string at strstart already in table */ | 
						|
        do { | 
						|
          s.strstart++; | 
						|
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/ | 
						|
          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | 
						|
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | 
						|
          s.head[s.ins_h] = s.strstart; | 
						|
          /***/ | 
						|
          /* strstart never exceeds WSIZE-MAX_MATCH, so there are | 
						|
           * always MIN_MATCH bytes ahead. | 
						|
           */ | 
						|
        } while (--s.match_length !== 0); | 
						|
        s.strstart++; | 
						|
      } else | 
						|
      { | 
						|
        s.strstart += s.match_length; | 
						|
        s.match_length = 0; | 
						|
        s.ins_h = s.window[s.strstart]; | 
						|
        /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ | 
						|
        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; | 
						|
 | 
						|
//#if MIN_MATCH != 3 | 
						|
//                Call UPDATE_HASH() MIN_MATCH-3 more times | 
						|
//#endif | 
						|
        /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | 
						|
         * matter since it will be recomputed at next deflate call. | 
						|
         */ | 
						|
      } | 
						|
    } else { | 
						|
      /* No match, output a literal byte */ | 
						|
      //Tracevv((stderr,"%c", s.window[s.strstart])); | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | 
						|
      bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | 
						|
 | 
						|
      s.lookahead--; | 
						|
      s.strstart++; | 
						|
    } | 
						|
    if (bflush) { | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
      flush_block_only(s, false); | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      /***/ | 
						|
    } | 
						|
  } | 
						|
  s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); | 
						|
  if (flush === Z_FINISH) { | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/ | 
						|
    flush_block_only(s, true); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_FINISH_STARTED; | 
						|
    } | 
						|
    /***/ | 
						|
    return BS_FINISH_DONE; | 
						|
  } | 
						|
  if (s.last_lit) { | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
    flush_block_only(s, false); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_NEED_MORE; | 
						|
    } | 
						|
    /***/ | 
						|
  } | 
						|
  return BS_BLOCK_DONE; | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Same as above, but achieves better compression. We use a lazy | 
						|
 * evaluation for matches: a match is finally adopted only if there is | 
						|
 * no better match at the next window position. | 
						|
 */ | 
						|
function deflate_slow(s, flush) { | 
						|
  var hash_head;          /* head of hash chain */ | 
						|
  var bflush;              /* set if current block must be flushed */ | 
						|
 | 
						|
  var max_insert; | 
						|
 | 
						|
  /* Process the input block. */ | 
						|
  for (;;) { | 
						|
    /* Make sure that we always have enough lookahead, except | 
						|
     * at the end of the input file. We need MAX_MATCH bytes | 
						|
     * for the next match, plus MIN_MATCH bytes to insert the | 
						|
     * string following the next match. | 
						|
     */ | 
						|
    if (s.lookahead < MIN_LOOKAHEAD) { | 
						|
      fill_window(s); | 
						|
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      if (s.lookahead === 0) { break; } /* flush the current block */ | 
						|
    } | 
						|
 | 
						|
    /* Insert the string window[strstart .. strstart+2] in the | 
						|
     * dictionary, and set hash_head to the head of the hash chain: | 
						|
     */ | 
						|
    hash_head = 0/*NIL*/; | 
						|
    if (s.lookahead >= MIN_MATCH) { | 
						|
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/ | 
						|
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | 
						|
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | 
						|
      s.head[s.ins_h] = s.strstart; | 
						|
      /***/ | 
						|
    } | 
						|
 | 
						|
    /* Find the longest match, discarding those <= prev_length. | 
						|
     */ | 
						|
    s.prev_length = s.match_length; | 
						|
    s.prev_match = s.match_start; | 
						|
    s.match_length = MIN_MATCH - 1; | 
						|
 | 
						|
    if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && | 
						|
        s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { | 
						|
      /* To simplify the code, we prevent matches with the string | 
						|
       * of window index 0 (in particular we have to avoid a match | 
						|
       * of the string with itself at the start of the input file). | 
						|
       */ | 
						|
      s.match_length = longest_match(s, hash_head); | 
						|
      /* longest_match() sets match_start */ | 
						|
 | 
						|
      if (s.match_length <= 5 && | 
						|
         (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { | 
						|
 | 
						|
        /* If prev_match is also MIN_MATCH, match_start is garbage | 
						|
         * but we will ignore the current match anyway. | 
						|
         */ | 
						|
        s.match_length = MIN_MATCH - 1; | 
						|
      } | 
						|
    } | 
						|
    /* If there was a match at the previous step and the current | 
						|
     * match is not better, output the previous match: | 
						|
     */ | 
						|
    if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { | 
						|
      max_insert = s.strstart + s.lookahead - MIN_MATCH; | 
						|
      /* Do not insert strings in hash table beyond this. */ | 
						|
 | 
						|
      //check_match(s, s.strstart-1, s.prev_match, s.prev_length); | 
						|
 | 
						|
      /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, | 
						|
                     s.prev_length - MIN_MATCH, bflush);***/ | 
						|
      bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); | 
						|
      /* Insert in hash table all strings up to the end of the match. | 
						|
       * strstart-1 and strstart are already inserted. If there is not | 
						|
       * enough lookahead, the last two strings are not inserted in | 
						|
       * the hash table. | 
						|
       */ | 
						|
      s.lookahead -= s.prev_length - 1; | 
						|
      s.prev_length -= 2; | 
						|
      do { | 
						|
        if (++s.strstart <= max_insert) { | 
						|
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/ | 
						|
          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | 
						|
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | 
						|
          s.head[s.ins_h] = s.strstart; | 
						|
          /***/ | 
						|
        } | 
						|
      } while (--s.prev_length !== 0); | 
						|
      s.match_available = 0; | 
						|
      s.match_length = MIN_MATCH - 1; | 
						|
      s.strstart++; | 
						|
 | 
						|
      if (bflush) { | 
						|
        /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
        flush_block_only(s, false); | 
						|
        if (s.strm.avail_out === 0) { | 
						|
          return BS_NEED_MORE; | 
						|
        } | 
						|
        /***/ | 
						|
      } | 
						|
 | 
						|
    } else if (s.match_available) { | 
						|
      /* If there was no match at the previous position, output a | 
						|
       * single literal. If there was a match but the current match | 
						|
       * is longer, truncate the previous match to a single literal. | 
						|
       */ | 
						|
      //Tracevv((stderr,"%c", s->window[s->strstart-1])); | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | 
						|
      bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | 
						|
 | 
						|
      if (bflush) { | 
						|
        /*** FLUSH_BLOCK_ONLY(s, 0) ***/ | 
						|
        flush_block_only(s, false); | 
						|
        /***/ | 
						|
      } | 
						|
      s.strstart++; | 
						|
      s.lookahead--; | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
    } else { | 
						|
      /* There is no previous match to compare with, wait for | 
						|
       * the next step to decide. | 
						|
       */ | 
						|
      s.match_available = 1; | 
						|
      s.strstart++; | 
						|
      s.lookahead--; | 
						|
    } | 
						|
  } | 
						|
  //Assert (flush != Z_NO_FLUSH, "no flush?"); | 
						|
  if (s.match_available) { | 
						|
    //Tracevv((stderr,"%c", s->window[s->strstart-1])); | 
						|
    /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | 
						|
    bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | 
						|
 | 
						|
    s.match_available = 0; | 
						|
  } | 
						|
  s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; | 
						|
  if (flush === Z_FINISH) { | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/ | 
						|
    flush_block_only(s, true); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_FINISH_STARTED; | 
						|
    } | 
						|
    /***/ | 
						|
    return BS_FINISH_DONE; | 
						|
  } | 
						|
  if (s.last_lit) { | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
    flush_block_only(s, false); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_NEED_MORE; | 
						|
    } | 
						|
    /***/ | 
						|
  } | 
						|
 | 
						|
  return BS_BLOCK_DONE; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance | 
						|
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of | 
						|
 * deflate switches away from Z_RLE.) | 
						|
 */ | 
						|
function deflate_rle(s, flush) { | 
						|
  var bflush;            /* set if current block must be flushed */ | 
						|
  var prev;              /* byte at distance one to match */ | 
						|
  var scan, strend;      /* scan goes up to strend for length of run */ | 
						|
 | 
						|
  var _win = s.window; | 
						|
 | 
						|
  for (;;) { | 
						|
    /* Make sure that we always have enough lookahead, except | 
						|
     * at the end of the input file. We need MAX_MATCH bytes | 
						|
     * for the longest run, plus one for the unrolled loop. | 
						|
     */ | 
						|
    if (s.lookahead <= MAX_MATCH) { | 
						|
      fill_window(s); | 
						|
      if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      if (s.lookahead === 0) { break; } /* flush the current block */ | 
						|
    } | 
						|
 | 
						|
    /* See how many times the previous byte repeats */ | 
						|
    s.match_length = 0; | 
						|
    if (s.lookahead >= MIN_MATCH && s.strstart > 0) { | 
						|
      scan = s.strstart - 1; | 
						|
      prev = _win[scan]; | 
						|
      if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { | 
						|
        strend = s.strstart + MAX_MATCH; | 
						|
        do { | 
						|
          /*jshint noempty:false*/ | 
						|
        } while (prev === _win[++scan] && prev === _win[++scan] && | 
						|
                 prev === _win[++scan] && prev === _win[++scan] && | 
						|
                 prev === _win[++scan] && prev === _win[++scan] && | 
						|
                 prev === _win[++scan] && prev === _win[++scan] && | 
						|
                 scan < strend); | 
						|
        s.match_length = MAX_MATCH - (strend - scan); | 
						|
        if (s.match_length > s.lookahead) { | 
						|
          s.match_length = s.lookahead; | 
						|
        } | 
						|
      } | 
						|
      //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | 
						|
    } | 
						|
 | 
						|
    /* Emit match if have run of MIN_MATCH or longer, else emit literal */ | 
						|
    if (s.match_length >= MIN_MATCH) { | 
						|
      //check_match(s, s.strstart, s.strstart - 1, s.match_length); | 
						|
 | 
						|
      /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ | 
						|
      bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); | 
						|
 | 
						|
      s.lookahead -= s.match_length; | 
						|
      s.strstart += s.match_length; | 
						|
      s.match_length = 0; | 
						|
    } else { | 
						|
      /* No match, output a literal byte */ | 
						|
      //Tracevv((stderr,"%c", s->window[s->strstart])); | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | 
						|
      bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | 
						|
 | 
						|
      s.lookahead--; | 
						|
      s.strstart++; | 
						|
    } | 
						|
    if (bflush) { | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
      flush_block_only(s, false); | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      /***/ | 
						|
    } | 
						|
  } | 
						|
  s.insert = 0; | 
						|
  if (flush === Z_FINISH) { | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/ | 
						|
    flush_block_only(s, true); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_FINISH_STARTED; | 
						|
    } | 
						|
    /***/ | 
						|
    return BS_FINISH_DONE; | 
						|
  } | 
						|
  if (s.last_lit) { | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
    flush_block_only(s, false); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_NEED_MORE; | 
						|
    } | 
						|
    /***/ | 
						|
  } | 
						|
  return BS_BLOCK_DONE; | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table. | 
						|
 * (It will be regenerated if this run of deflate switches away from Huffman.) | 
						|
 */ | 
						|
function deflate_huff(s, flush) { | 
						|
  var bflush;             /* set if current block must be flushed */ | 
						|
 | 
						|
  for (;;) { | 
						|
    /* Make sure that we have a literal to write. */ | 
						|
    if (s.lookahead === 0) { | 
						|
      fill_window(s); | 
						|
      if (s.lookahead === 0) { | 
						|
        if (flush === Z_NO_FLUSH) { | 
						|
          return BS_NEED_MORE; | 
						|
        } | 
						|
        break;      /* flush the current block */ | 
						|
      } | 
						|
    } | 
						|
 | 
						|
    /* Output a literal byte */ | 
						|
    s.match_length = 0; | 
						|
    //Tracevv((stderr,"%c", s->window[s->strstart])); | 
						|
    /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | 
						|
    bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | 
						|
    s.lookahead--; | 
						|
    s.strstart++; | 
						|
    if (bflush) { | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
      flush_block_only(s, false); | 
						|
      if (s.strm.avail_out === 0) { | 
						|
        return BS_NEED_MORE; | 
						|
      } | 
						|
      /***/ | 
						|
    } | 
						|
  } | 
						|
  s.insert = 0; | 
						|
  if (flush === Z_FINISH) { | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/ | 
						|
    flush_block_only(s, true); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_FINISH_STARTED; | 
						|
    } | 
						|
    /***/ | 
						|
    return BS_FINISH_DONE; | 
						|
  } | 
						|
  if (s.last_lit) { | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/ | 
						|
    flush_block_only(s, false); | 
						|
    if (s.strm.avail_out === 0) { | 
						|
      return BS_NEED_MORE; | 
						|
    } | 
						|
    /***/ | 
						|
  } | 
						|
  return BS_BLOCK_DONE; | 
						|
} | 
						|
 | 
						|
/* Values for max_lazy_match, good_match and max_chain_length, depending on | 
						|
 * the desired pack level (0..9). The values given below have been tuned to | 
						|
 * exclude worst case performance for pathological files. Better values may be | 
						|
 * found for specific files. | 
						|
 */ | 
						|
function Config(good_length, max_lazy, nice_length, max_chain, func) { | 
						|
  this.good_length = good_length; | 
						|
  this.max_lazy = max_lazy; | 
						|
  this.nice_length = nice_length; | 
						|
  this.max_chain = max_chain; | 
						|
  this.func = func; | 
						|
} | 
						|
 | 
						|
var configuration_table; | 
						|
 | 
						|
configuration_table = [ | 
						|
  /*      good lazy nice chain */ | 
						|
  new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */ | 
						|
  new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */ | 
						|
  new Config(4, 5, 16, 8, deflate_fast),           /* 2 */ | 
						|
  new Config(4, 6, 32, 32, deflate_fast),          /* 3 */ | 
						|
 | 
						|
  new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */ | 
						|
  new Config(8, 16, 32, 32, deflate_slow),         /* 5 */ | 
						|
  new Config(8, 16, 128, 128, deflate_slow),       /* 6 */ | 
						|
  new Config(8, 32, 128, 256, deflate_slow),       /* 7 */ | 
						|
  new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */ | 
						|
  new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */ | 
						|
]; | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Initialize the "longest match" routines for a new zlib stream | 
						|
 */ | 
						|
function lm_init(s) { | 
						|
  s.window_size = 2 * s.w_size; | 
						|
 | 
						|
  /*** CLEAR_HASH(s); ***/ | 
						|
  zero(s.head); // Fill with NIL (= 0); | 
						|
 | 
						|
  /* Set the default configuration parameters: | 
						|
   */ | 
						|
  s.max_lazy_match = configuration_table[s.level].max_lazy; | 
						|
  s.good_match = configuration_table[s.level].good_length; | 
						|
  s.nice_match = configuration_table[s.level].nice_length; | 
						|
  s.max_chain_length = configuration_table[s.level].max_chain; | 
						|
 | 
						|
  s.strstart = 0; | 
						|
  s.block_start = 0; | 
						|
  s.lookahead = 0; | 
						|
  s.insert = 0; | 
						|
  s.match_length = s.prev_length = MIN_MATCH - 1; | 
						|
  s.match_available = 0; | 
						|
  s.ins_h = 0; | 
						|
} | 
						|
 | 
						|
 | 
						|
function DeflateState() { | 
						|
  this.strm = null;            /* pointer back to this zlib stream */ | 
						|
  this.status = 0;            /* as the name implies */ | 
						|
  this.pending_buf = null;      /* output still pending */ | 
						|
  this.pending_buf_size = 0;  /* size of pending_buf */ | 
						|
  this.pending_out = 0;       /* next pending byte to output to the stream */ | 
						|
  this.pending = 0;           /* nb of bytes in the pending buffer */ | 
						|
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */ | 
						|
  this.gzhead = null;         /* gzip header information to write */ | 
						|
  this.gzindex = 0;           /* where in extra, name, or comment */ | 
						|
  this.method = Z_DEFLATED; /* can only be DEFLATED */ | 
						|
  this.last_flush = -1;   /* value of flush param for previous deflate call */ | 
						|
 | 
						|
  this.w_size = 0;  /* LZ77 window size (32K by default) */ | 
						|
  this.w_bits = 0;  /* log2(w_size)  (8..16) */ | 
						|
  this.w_mask = 0;  /* w_size - 1 */ | 
						|
 | 
						|
  this.window = null; | 
						|
  /* Sliding window. Input bytes are read into the second half of the window, | 
						|
   * and move to the first half later to keep a dictionary of at least wSize | 
						|
   * bytes. With this organization, matches are limited to a distance of | 
						|
   * wSize-MAX_MATCH bytes, but this ensures that IO is always | 
						|
   * performed with a length multiple of the block size. | 
						|
   */ | 
						|
 | 
						|
  this.window_size = 0; | 
						|
  /* Actual size of window: 2*wSize, except when the user input buffer | 
						|
   * is directly used as sliding window. | 
						|
   */ | 
						|
 | 
						|
  this.prev = null; | 
						|
  /* Link to older string with same hash index. To limit the size of this | 
						|
   * array to 64K, this link is maintained only for the last 32K strings. | 
						|
   * An index in this array is thus a window index modulo 32K. | 
						|
   */ | 
						|
 | 
						|
  this.head = null;   /* Heads of the hash chains or NIL. */ | 
						|
 | 
						|
  this.ins_h = 0;       /* hash index of string to be inserted */ | 
						|
  this.hash_size = 0;   /* number of elements in hash table */ | 
						|
  this.hash_bits = 0;   /* log2(hash_size) */ | 
						|
  this.hash_mask = 0;   /* hash_size-1 */ | 
						|
 | 
						|
  this.hash_shift = 0; | 
						|
  /* Number of bits by which ins_h must be shifted at each input | 
						|
   * step. It must be such that after MIN_MATCH steps, the oldest | 
						|
   * byte no longer takes part in the hash key, that is: | 
						|
   *   hash_shift * MIN_MATCH >= hash_bits | 
						|
   */ | 
						|
 | 
						|
  this.block_start = 0; | 
						|
  /* Window position at the beginning of the current output block. Gets | 
						|
   * negative when the window is moved backwards. | 
						|
   */ | 
						|
 | 
						|
  this.match_length = 0;      /* length of best match */ | 
						|
  this.prev_match = 0;        /* previous match */ | 
						|
  this.match_available = 0;   /* set if previous match exists */ | 
						|
  this.strstart = 0;          /* start of string to insert */ | 
						|
  this.match_start = 0;       /* start of matching string */ | 
						|
  this.lookahead = 0;         /* number of valid bytes ahead in window */ | 
						|
 | 
						|
  this.prev_length = 0; | 
						|
  /* Length of the best match at previous step. Matches not greater than this | 
						|
   * are discarded. This is used in the lazy match evaluation. | 
						|
   */ | 
						|
 | 
						|
  this.max_chain_length = 0; | 
						|
  /* To speed up deflation, hash chains are never searched beyond this | 
						|
   * length.  A higher limit improves compression ratio but degrades the | 
						|
   * speed. | 
						|
   */ | 
						|
 | 
						|
  this.max_lazy_match = 0; | 
						|
  /* Attempt to find a better match only when the current match is strictly | 
						|
   * smaller than this value. This mechanism is used only for compression | 
						|
   * levels >= 4. | 
						|
   */ | 
						|
  // That's alias to max_lazy_match, don't use directly | 
						|
  //this.max_insert_length = 0; | 
						|
  /* Insert new strings in the hash table only if the match length is not | 
						|
   * greater than this length. This saves time but degrades compression. | 
						|
   * max_insert_length is used only for compression levels <= 3. | 
						|
   */ | 
						|
 | 
						|
  this.level = 0;     /* compression level (1..9) */ | 
						|
  this.strategy = 0;  /* favor or force Huffman coding*/ | 
						|
 | 
						|
  this.good_match = 0; | 
						|
  /* Use a faster search when the previous match is longer than this */ | 
						|
 | 
						|
  this.nice_match = 0; /* Stop searching when current match exceeds this */ | 
						|
 | 
						|
              /* used by trees.c: */ | 
						|
 | 
						|
  /* Didn't use ct_data typedef below to suppress compiler warning */ | 
						|
 | 
						|
  // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */ | 
						|
  // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ | 
						|
  // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */ | 
						|
 | 
						|
  // Use flat array of DOUBLE size, with interleaved fata, | 
						|
  // because JS does not support effective | 
						|
  this.dyn_ltree  = new utils.Buf16(HEAP_SIZE * 2); | 
						|
  this.dyn_dtree  = new utils.Buf16((2 * D_CODES + 1) * 2); | 
						|
  this.bl_tree    = new utils.Buf16((2 * BL_CODES + 1) * 2); | 
						|
  zero(this.dyn_ltree); | 
						|
  zero(this.dyn_dtree); | 
						|
  zero(this.bl_tree); | 
						|
 | 
						|
  this.l_desc   = null;         /* desc. for literal tree */ | 
						|
  this.d_desc   = null;         /* desc. for distance tree */ | 
						|
  this.bl_desc  = null;         /* desc. for bit length tree */ | 
						|
 | 
						|
  //ush bl_count[MAX_BITS+1]; | 
						|
  this.bl_count = new utils.Buf16(MAX_BITS + 1); | 
						|
  /* number of codes at each bit length for an optimal tree */ | 
						|
 | 
						|
  //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */ | 
						|
  this.heap = new utils.Buf16(2 * L_CODES + 1);  /* heap used to build the Huffman trees */ | 
						|
  zero(this.heap); | 
						|
 | 
						|
  this.heap_len = 0;               /* number of elements in the heap */ | 
						|
  this.heap_max = 0;               /* element of largest frequency */ | 
						|
  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | 
						|
   * The same heap array is used to build all trees. | 
						|
   */ | 
						|
 | 
						|
  this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; | 
						|
  zero(this.depth); | 
						|
  /* Depth of each subtree used as tie breaker for trees of equal frequency | 
						|
   */ | 
						|
 | 
						|
  this.l_buf = 0;          /* buffer index for literals or lengths */ | 
						|
 | 
						|
  this.lit_bufsize = 0; | 
						|
  /* Size of match buffer for literals/lengths.  There are 4 reasons for | 
						|
   * limiting lit_bufsize to 64K: | 
						|
   *   - frequencies can be kept in 16 bit counters | 
						|
   *   - if compression is not successful for the first block, all input | 
						|
   *     data is still in the window so we can still emit a stored block even | 
						|
   *     when input comes from standard input.  (This can also be done for | 
						|
   *     all blocks if lit_bufsize is not greater than 32K.) | 
						|
   *   - if compression is not successful for a file smaller than 64K, we can | 
						|
   *     even emit a stored file instead of a stored block (saving 5 bytes). | 
						|
   *     This is applicable only for zip (not gzip or zlib). | 
						|
   *   - creating new Huffman trees less frequently may not provide fast | 
						|
   *     adaptation to changes in the input data statistics. (Take for | 
						|
   *     example a binary file with poorly compressible code followed by | 
						|
   *     a highly compressible string table.) Smaller buffer sizes give | 
						|
   *     fast adaptation but have of course the overhead of transmitting | 
						|
   *     trees more frequently. | 
						|
   *   - I can't count above 4 | 
						|
   */ | 
						|
 | 
						|
  this.last_lit = 0;      /* running index in l_buf */ | 
						|
 | 
						|
  this.d_buf = 0; | 
						|
  /* Buffer index for distances. To simplify the code, d_buf and l_buf have | 
						|
   * the same number of elements. To use different lengths, an extra flag | 
						|
   * array would be necessary. | 
						|
   */ | 
						|
 | 
						|
  this.opt_len = 0;       /* bit length of current block with optimal trees */ | 
						|
  this.static_len = 0;    /* bit length of current block with static trees */ | 
						|
  this.matches = 0;       /* number of string matches in current block */ | 
						|
  this.insert = 0;        /* bytes at end of window left to insert */ | 
						|
 | 
						|
 | 
						|
  this.bi_buf = 0; | 
						|
  /* Output buffer. bits are inserted starting at the bottom (least | 
						|
   * significant bits). | 
						|
   */ | 
						|
  this.bi_valid = 0; | 
						|
  /* Number of valid bits in bi_buf.  All bits above the last valid bit | 
						|
   * are always zero. | 
						|
   */ | 
						|
 | 
						|
  // Used for window memory init. We safely ignore it for JS. That makes | 
						|
  // sense only for pointers and memory check tools. | 
						|
  //this.high_water = 0; | 
						|
  /* High water mark offset in window for initialized bytes -- bytes above | 
						|
   * this are set to zero in order to avoid memory check warnings when | 
						|
   * longest match routines access bytes past the input.  This is then | 
						|
   * updated to the new high water mark. | 
						|
   */ | 
						|
} | 
						|
 | 
						|
 | 
						|
function deflateResetKeep(strm) { | 
						|
  var s; | 
						|
 | 
						|
  if (!strm || !strm.state) { | 
						|
    return err(strm, Z_STREAM_ERROR); | 
						|
  } | 
						|
 | 
						|
  strm.total_in = strm.total_out = 0; | 
						|
  strm.data_type = Z_UNKNOWN; | 
						|
 | 
						|
  s = strm.state; | 
						|
  s.pending = 0; | 
						|
  s.pending_out = 0; | 
						|
 | 
						|
  if (s.wrap < 0) { | 
						|
    s.wrap = -s.wrap; | 
						|
    /* was made negative by deflate(..., Z_FINISH); */ | 
						|
  } | 
						|
  s.status = (s.wrap ? INIT_STATE : BUSY_STATE); | 
						|
  strm.adler = (s.wrap === 2) ? | 
						|
    0  // crc32(0, Z_NULL, 0) | 
						|
  : | 
						|
    1; // adler32(0, Z_NULL, 0) | 
						|
  s.last_flush = Z_NO_FLUSH; | 
						|
  trees._tr_init(s); | 
						|
  return Z_OK; | 
						|
} | 
						|
 | 
						|
 | 
						|
function deflateReset(strm) { | 
						|
  var ret = deflateResetKeep(strm); | 
						|
  if (ret === Z_OK) { | 
						|
    lm_init(strm.state); | 
						|
  } | 
						|
  return ret; | 
						|
} | 
						|
 | 
						|
 | 
						|
function deflateSetHeader(strm, head) { | 
						|
  if (!strm || !strm.state) { return Z_STREAM_ERROR; } | 
						|
  if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } | 
						|
  strm.state.gzhead = head; | 
						|
  return Z_OK; | 
						|
} | 
						|
 | 
						|
 | 
						|
function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { | 
						|
  if (!strm) { // === Z_NULL | 
						|
    return Z_STREAM_ERROR; | 
						|
  } | 
						|
  var wrap = 1; | 
						|
 | 
						|
  if (level === Z_DEFAULT_COMPRESSION) { | 
						|
    level = 6; | 
						|
  } | 
						|
 | 
						|
  if (windowBits < 0) { /* suppress zlib wrapper */ | 
						|
    wrap = 0; | 
						|
    windowBits = -windowBits; | 
						|
  } | 
						|
 | 
						|
  else if (windowBits > 15) { | 
						|
    wrap = 2;           /* write gzip wrapper instead */ | 
						|
    windowBits -= 16; | 
						|
  } | 
						|
 | 
						|
 | 
						|
  if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || | 
						|
    windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | 
						|
    strategy < 0 || strategy > Z_FIXED) { | 
						|
    return err(strm, Z_STREAM_ERROR); | 
						|
  } | 
						|
 | 
						|
 | 
						|
  if (windowBits === 8) { | 
						|
    windowBits = 9; | 
						|
  } | 
						|
  /* until 256-byte window bug fixed */ | 
						|
 | 
						|
  var s = new DeflateState(); | 
						|
 | 
						|
  strm.state = s; | 
						|
  s.strm = strm; | 
						|
 | 
						|
  s.wrap = wrap; | 
						|
  s.gzhead = null; | 
						|
  s.w_bits = windowBits; | 
						|
  s.w_size = 1 << s.w_bits; | 
						|
  s.w_mask = s.w_size - 1; | 
						|
 | 
						|
  s.hash_bits = memLevel + 7; | 
						|
  s.hash_size = 1 << s.hash_bits; | 
						|
  s.hash_mask = s.hash_size - 1; | 
						|
  s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); | 
						|
 | 
						|
  s.window = new utils.Buf8(s.w_size * 2); | 
						|
  s.head = new utils.Buf16(s.hash_size); | 
						|
  s.prev = new utils.Buf16(s.w_size); | 
						|
 | 
						|
  // Don't need mem init magic for JS. | 
						|
  //s.high_water = 0;  /* nothing written to s->window yet */ | 
						|
 | 
						|
  s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | 
						|
 | 
						|
  s.pending_buf_size = s.lit_bufsize * 4; | 
						|
 | 
						|
  //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | 
						|
  //s->pending_buf = (uchf *) overlay; | 
						|
  s.pending_buf = new utils.Buf8(s.pending_buf_size); | 
						|
 | 
						|
  // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) | 
						|
  //s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | 
						|
  s.d_buf = 1 * s.lit_bufsize; | 
						|
 | 
						|
  //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | 
						|
  s.l_buf = (1 + 2) * s.lit_bufsize; | 
						|
 | 
						|
  s.level = level; | 
						|
  s.strategy = strategy; | 
						|
  s.method = method; | 
						|
 | 
						|
  return deflateReset(strm); | 
						|
} | 
						|
 | 
						|
function deflateInit(strm, level) { | 
						|
  return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); | 
						|
} | 
						|
 | 
						|
 | 
						|
function deflate(strm, flush) { | 
						|
  var old_flush, s; | 
						|
  var beg, val; // for gzip header write only | 
						|
 | 
						|
  if (!strm || !strm.state || | 
						|
    flush > Z_BLOCK || flush < 0) { | 
						|
    return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; | 
						|
  } | 
						|
 | 
						|
  s = strm.state; | 
						|
 | 
						|
  if (!strm.output || | 
						|
      (!strm.input && strm.avail_in !== 0) || | 
						|
      (s.status === FINISH_STATE && flush !== Z_FINISH)) { | 
						|
    return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); | 
						|
  } | 
						|
 | 
						|
  s.strm = strm; /* just in case */ | 
						|
  old_flush = s.last_flush; | 
						|
  s.last_flush = flush; | 
						|
 | 
						|
  /* Write the header */ | 
						|
  if (s.status === INIT_STATE) { | 
						|
 | 
						|
    if (s.wrap === 2) { // GZIP header | 
						|
      strm.adler = 0;  //crc32(0L, Z_NULL, 0); | 
						|
      put_byte(s, 31); | 
						|
      put_byte(s, 139); | 
						|
      put_byte(s, 8); | 
						|
      if (!s.gzhead) { // s->gzhead == Z_NULL | 
						|
        put_byte(s, 0); | 
						|
        put_byte(s, 0); | 
						|
        put_byte(s, 0); | 
						|
        put_byte(s, 0); | 
						|
        put_byte(s, 0); | 
						|
        put_byte(s, s.level === 9 ? 2 : | 
						|
                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | 
						|
                     4 : 0)); | 
						|
        put_byte(s, OS_CODE); | 
						|
        s.status = BUSY_STATE; | 
						|
      } | 
						|
      else { | 
						|
        put_byte(s, (s.gzhead.text ? 1 : 0) + | 
						|
                    (s.gzhead.hcrc ? 2 : 0) + | 
						|
                    (!s.gzhead.extra ? 0 : 4) + | 
						|
                    (!s.gzhead.name ? 0 : 8) + | 
						|
                    (!s.gzhead.comment ? 0 : 16) | 
						|
        ); | 
						|
        put_byte(s, s.gzhead.time & 0xff); | 
						|
        put_byte(s, (s.gzhead.time >> 8) & 0xff); | 
						|
        put_byte(s, (s.gzhead.time >> 16) & 0xff); | 
						|
        put_byte(s, (s.gzhead.time >> 24) & 0xff); | 
						|
        put_byte(s, s.level === 9 ? 2 : | 
						|
                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | 
						|
                     4 : 0)); | 
						|
        put_byte(s, s.gzhead.os & 0xff); | 
						|
        if (s.gzhead.extra && s.gzhead.extra.length) { | 
						|
          put_byte(s, s.gzhead.extra.length & 0xff); | 
						|
          put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); | 
						|
        } | 
						|
        if (s.gzhead.hcrc) { | 
						|
          strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); | 
						|
        } | 
						|
        s.gzindex = 0; | 
						|
        s.status = EXTRA_STATE; | 
						|
      } | 
						|
    } | 
						|
    else // DEFLATE header | 
						|
    { | 
						|
      var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; | 
						|
      var level_flags = -1; | 
						|
 | 
						|
      if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { | 
						|
        level_flags = 0; | 
						|
      } else if (s.level < 6) { | 
						|
        level_flags = 1; | 
						|
      } else if (s.level === 6) { | 
						|
        level_flags = 2; | 
						|
      } else { | 
						|
        level_flags = 3; | 
						|
      } | 
						|
      header |= (level_flags << 6); | 
						|
      if (s.strstart !== 0) { header |= PRESET_DICT; } | 
						|
      header += 31 - (header % 31); | 
						|
 | 
						|
      s.status = BUSY_STATE; | 
						|
      putShortMSB(s, header); | 
						|
 | 
						|
      /* Save the adler32 of the preset dictionary: */ | 
						|
      if (s.strstart !== 0) { | 
						|
        putShortMSB(s, strm.adler >>> 16); | 
						|
        putShortMSB(s, strm.adler & 0xffff); | 
						|
      } | 
						|
      strm.adler = 1; // adler32(0L, Z_NULL, 0); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
//#ifdef GZIP | 
						|
  if (s.status === EXTRA_STATE) { | 
						|
    if (s.gzhead.extra/* != Z_NULL*/) { | 
						|
      beg = s.pending;  /* start of bytes to update crc */ | 
						|
 | 
						|
      while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { | 
						|
        if (s.pending === s.pending_buf_size) { | 
						|
          if (s.gzhead.hcrc && s.pending > beg) { | 
						|
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
          } | 
						|
          flush_pending(strm); | 
						|
          beg = s.pending; | 
						|
          if (s.pending === s.pending_buf_size) { | 
						|
            break; | 
						|
          } | 
						|
        } | 
						|
        put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); | 
						|
        s.gzindex++; | 
						|
      } | 
						|
      if (s.gzhead.hcrc && s.pending > beg) { | 
						|
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
      } | 
						|
      if (s.gzindex === s.gzhead.extra.length) { | 
						|
        s.gzindex = 0; | 
						|
        s.status = NAME_STATE; | 
						|
      } | 
						|
    } | 
						|
    else { | 
						|
      s.status = NAME_STATE; | 
						|
    } | 
						|
  } | 
						|
  if (s.status === NAME_STATE) { | 
						|
    if (s.gzhead.name/* != Z_NULL*/) { | 
						|
      beg = s.pending;  /* start of bytes to update crc */ | 
						|
      //int val; | 
						|
 | 
						|
      do { | 
						|
        if (s.pending === s.pending_buf_size) { | 
						|
          if (s.gzhead.hcrc && s.pending > beg) { | 
						|
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
          } | 
						|
          flush_pending(strm); | 
						|
          beg = s.pending; | 
						|
          if (s.pending === s.pending_buf_size) { | 
						|
            val = 1; | 
						|
            break; | 
						|
          } | 
						|
        } | 
						|
        // JS specific: little magic to add zero terminator to end of string | 
						|
        if (s.gzindex < s.gzhead.name.length) { | 
						|
          val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; | 
						|
        } else { | 
						|
          val = 0; | 
						|
        } | 
						|
        put_byte(s, val); | 
						|
      } while (val !== 0); | 
						|
 | 
						|
      if (s.gzhead.hcrc && s.pending > beg) { | 
						|
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
      } | 
						|
      if (val === 0) { | 
						|
        s.gzindex = 0; | 
						|
        s.status = COMMENT_STATE; | 
						|
      } | 
						|
    } | 
						|
    else { | 
						|
      s.status = COMMENT_STATE; | 
						|
    } | 
						|
  } | 
						|
  if (s.status === COMMENT_STATE) { | 
						|
    if (s.gzhead.comment/* != Z_NULL*/) { | 
						|
      beg = s.pending;  /* start of bytes to update crc */ | 
						|
      //int val; | 
						|
 | 
						|
      do { | 
						|
        if (s.pending === s.pending_buf_size) { | 
						|
          if (s.gzhead.hcrc && s.pending > beg) { | 
						|
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
          } | 
						|
          flush_pending(strm); | 
						|
          beg = s.pending; | 
						|
          if (s.pending === s.pending_buf_size) { | 
						|
            val = 1; | 
						|
            break; | 
						|
          } | 
						|
        } | 
						|
        // JS specific: little magic to add zero terminator to end of string | 
						|
        if (s.gzindex < s.gzhead.comment.length) { | 
						|
          val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; | 
						|
        } else { | 
						|
          val = 0; | 
						|
        } | 
						|
        put_byte(s, val); | 
						|
      } while (val !== 0); | 
						|
 | 
						|
      if (s.gzhead.hcrc && s.pending > beg) { | 
						|
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | 
						|
      } | 
						|
      if (val === 0) { | 
						|
        s.status = HCRC_STATE; | 
						|
      } | 
						|
    } | 
						|
    else { | 
						|
      s.status = HCRC_STATE; | 
						|
    } | 
						|
  } | 
						|
  if (s.status === HCRC_STATE) { | 
						|
    if (s.gzhead.hcrc) { | 
						|
      if (s.pending + 2 > s.pending_buf_size) { | 
						|
        flush_pending(strm); | 
						|
      } | 
						|
      if (s.pending + 2 <= s.pending_buf_size) { | 
						|
        put_byte(s, strm.adler & 0xff); | 
						|
        put_byte(s, (strm.adler >> 8) & 0xff); | 
						|
        strm.adler = 0; //crc32(0L, Z_NULL, 0); | 
						|
        s.status = BUSY_STATE; | 
						|
      } | 
						|
    } | 
						|
    else { | 
						|
      s.status = BUSY_STATE; | 
						|
    } | 
						|
  } | 
						|
//#endif | 
						|
 | 
						|
  /* Flush as much pending output as possible */ | 
						|
  if (s.pending !== 0) { | 
						|
    flush_pending(strm); | 
						|
    if (strm.avail_out === 0) { | 
						|
      /* Since avail_out is 0, deflate will be called again with | 
						|
       * more output space, but possibly with both pending and | 
						|
       * avail_in equal to zero. There won't be anything to do, | 
						|
       * but this is not an error situation so make sure we | 
						|
       * return OK instead of BUF_ERROR at next call of deflate: | 
						|
       */ | 
						|
      s.last_flush = -1; | 
						|
      return Z_OK; | 
						|
    } | 
						|
 | 
						|
    /* Make sure there is something to do and avoid duplicate consecutive | 
						|
     * flushes. For repeated and useless calls with Z_FINISH, we keep | 
						|
     * returning Z_STREAM_END instead of Z_BUF_ERROR. | 
						|
     */ | 
						|
  } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && | 
						|
    flush !== Z_FINISH) { | 
						|
    return err(strm, Z_BUF_ERROR); | 
						|
  } | 
						|
 | 
						|
  /* User must not provide more input after the first FINISH: */ | 
						|
  if (s.status === FINISH_STATE && strm.avail_in !== 0) { | 
						|
    return err(strm, Z_BUF_ERROR); | 
						|
  } | 
						|
 | 
						|
  /* Start a new block or continue the current one. | 
						|
   */ | 
						|
  if (strm.avail_in !== 0 || s.lookahead !== 0 || | 
						|
    (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { | 
						|
    var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : | 
						|
      (s.strategy === Z_RLE ? deflate_rle(s, flush) : | 
						|
        configuration_table[s.level].func(s, flush)); | 
						|
 | 
						|
    if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { | 
						|
      s.status = FINISH_STATE; | 
						|
    } | 
						|
    if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { | 
						|
      if (strm.avail_out === 0) { | 
						|
        s.last_flush = -1; | 
						|
        /* avoid BUF_ERROR next call, see above */ | 
						|
      } | 
						|
      return Z_OK; | 
						|
      /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | 
						|
       * of deflate should use the same flush parameter to make sure | 
						|
       * that the flush is complete. So we don't have to output an | 
						|
       * empty block here, this will be done at next call. This also | 
						|
       * ensures that for a very small output buffer, we emit at most | 
						|
       * one empty block. | 
						|
       */ | 
						|
    } | 
						|
    if (bstate === BS_BLOCK_DONE) { | 
						|
      if (flush === Z_PARTIAL_FLUSH) { | 
						|
        trees._tr_align(s); | 
						|
      } | 
						|
      else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | 
						|
 | 
						|
        trees._tr_stored_block(s, 0, 0, false); | 
						|
        /* For a full flush, this empty block will be recognized | 
						|
         * as a special marker by inflate_sync(). | 
						|
         */ | 
						|
        if (flush === Z_FULL_FLUSH) { | 
						|
          /*** CLEAR_HASH(s); ***/             /* forget history */ | 
						|
          zero(s.head); // Fill with NIL (= 0); | 
						|
 | 
						|
          if (s.lookahead === 0) { | 
						|
            s.strstart = 0; | 
						|
            s.block_start = 0; | 
						|
            s.insert = 0; | 
						|
          } | 
						|
        } | 
						|
      } | 
						|
      flush_pending(strm); | 
						|
      if (strm.avail_out === 0) { | 
						|
        s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | 
						|
        return Z_OK; | 
						|
      } | 
						|
    } | 
						|
  } | 
						|
  //Assert(strm->avail_out > 0, "bug2"); | 
						|
  //if (strm.avail_out <= 0) { throw new Error("bug2");} | 
						|
 | 
						|
  if (flush !== Z_FINISH) { return Z_OK; } | 
						|
  if (s.wrap <= 0) { return Z_STREAM_END; } | 
						|
 | 
						|
  /* Write the trailer */ | 
						|
  if (s.wrap === 2) { | 
						|
    put_byte(s, strm.adler & 0xff); | 
						|
    put_byte(s, (strm.adler >> 8) & 0xff); | 
						|
    put_byte(s, (strm.adler >> 16) & 0xff); | 
						|
    put_byte(s, (strm.adler >> 24) & 0xff); | 
						|
    put_byte(s, strm.total_in & 0xff); | 
						|
    put_byte(s, (strm.total_in >> 8) & 0xff); | 
						|
    put_byte(s, (strm.total_in >> 16) & 0xff); | 
						|
    put_byte(s, (strm.total_in >> 24) & 0xff); | 
						|
  } | 
						|
  else | 
						|
  { | 
						|
    putShortMSB(s, strm.adler >>> 16); | 
						|
    putShortMSB(s, strm.adler & 0xffff); | 
						|
  } | 
						|
 | 
						|
  flush_pending(strm); | 
						|
  /* If avail_out is zero, the application will call deflate again | 
						|
   * to flush the rest. | 
						|
   */ | 
						|
  if (s.wrap > 0) { s.wrap = -s.wrap; } | 
						|
  /* write the trailer only once! */ | 
						|
  return s.pending !== 0 ? Z_OK : Z_STREAM_END; | 
						|
} | 
						|
 | 
						|
function deflateEnd(strm) { | 
						|
  var status; | 
						|
 | 
						|
  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | 
						|
    return Z_STREAM_ERROR; | 
						|
  } | 
						|
 | 
						|
  status = strm.state.status; | 
						|
  if (status !== INIT_STATE && | 
						|
    status !== EXTRA_STATE && | 
						|
    status !== NAME_STATE && | 
						|
    status !== COMMENT_STATE && | 
						|
    status !== HCRC_STATE && | 
						|
    status !== BUSY_STATE && | 
						|
    status !== FINISH_STATE | 
						|
  ) { | 
						|
    return err(strm, Z_STREAM_ERROR); | 
						|
  } | 
						|
 | 
						|
  strm.state = null; | 
						|
 | 
						|
  return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* ========================================================================= | 
						|
 * Initializes the compression dictionary from the given byte | 
						|
 * sequence without producing any compressed output. | 
						|
 */ | 
						|
function deflateSetDictionary(strm, dictionary) { | 
						|
  var dictLength = dictionary.length; | 
						|
 | 
						|
  var s; | 
						|
  var str, n; | 
						|
  var wrap; | 
						|
  var avail; | 
						|
  var next; | 
						|
  var input; | 
						|
  var tmpDict; | 
						|
 | 
						|
  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | 
						|
    return Z_STREAM_ERROR; | 
						|
  } | 
						|
 | 
						|
  s = strm.state; | 
						|
  wrap = s.wrap; | 
						|
 | 
						|
  if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { | 
						|
    return Z_STREAM_ERROR; | 
						|
  } | 
						|
 | 
						|
  /* when using zlib wrappers, compute Adler-32 for provided dictionary */ | 
						|
  if (wrap === 1) { | 
						|
    /* adler32(strm->adler, dictionary, dictLength); */ | 
						|
    strm.adler = adler32(strm.adler, dictionary, dictLength, 0); | 
						|
  } | 
						|
 | 
						|
  s.wrap = 0;   /* avoid computing Adler-32 in read_buf */ | 
						|
 | 
						|
  /* if dictionary would fill window, just replace the history */ | 
						|
  if (dictLength >= s.w_size) { | 
						|
    if (wrap === 0) {            /* already empty otherwise */ | 
						|
      /*** CLEAR_HASH(s); ***/ | 
						|
      zero(s.head); // Fill with NIL (= 0); | 
						|
      s.strstart = 0; | 
						|
      s.block_start = 0; | 
						|
      s.insert = 0; | 
						|
    } | 
						|
    /* use the tail */ | 
						|
    // dictionary = dictionary.slice(dictLength - s.w_size); | 
						|
    tmpDict = new utils.Buf8(s.w_size); | 
						|
    utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); | 
						|
    dictionary = tmpDict; | 
						|
    dictLength = s.w_size; | 
						|
  } | 
						|
  /* insert dictionary into window and hash */ | 
						|
  avail = strm.avail_in; | 
						|
  next = strm.next_in; | 
						|
  input = strm.input; | 
						|
  strm.avail_in = dictLength; | 
						|
  strm.next_in = 0; | 
						|
  strm.input = dictionary; | 
						|
  fill_window(s); | 
						|
  while (s.lookahead >= MIN_MATCH) { | 
						|
    str = s.strstart; | 
						|
    n = s.lookahead - (MIN_MATCH - 1); | 
						|
    do { | 
						|
      /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | 
						|
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | 
						|
 | 
						|
      s.prev[str & s.w_mask] = s.head[s.ins_h]; | 
						|
 | 
						|
      s.head[s.ins_h] = str; | 
						|
      str++; | 
						|
    } while (--n); | 
						|
    s.strstart = str; | 
						|
    s.lookahead = MIN_MATCH - 1; | 
						|
    fill_window(s); | 
						|
  } | 
						|
  s.strstart += s.lookahead; | 
						|
  s.block_start = s.strstart; | 
						|
  s.insert = s.lookahead; | 
						|
  s.lookahead = 0; | 
						|
  s.match_length = s.prev_length = MIN_MATCH - 1; | 
						|
  s.match_available = 0; | 
						|
  strm.next_in = next; | 
						|
  strm.input = input; | 
						|
  strm.avail_in = avail; | 
						|
  s.wrap = wrap; | 
						|
  return Z_OK; | 
						|
} | 
						|
 | 
						|
 | 
						|
exports.deflateInit = deflateInit; | 
						|
exports.deflateInit2 = deflateInit2; | 
						|
exports.deflateReset = deflateReset; | 
						|
exports.deflateResetKeep = deflateResetKeep; | 
						|
exports.deflateSetHeader = deflateSetHeader; | 
						|
exports.deflate = deflate; | 
						|
exports.deflateEnd = deflateEnd; | 
						|
exports.deflateSetDictionary = deflateSetDictionary; | 
						|
exports.deflateInfo = 'pako deflate (from Nodeca project)'; | 
						|
 | 
						|
/* Not implemented | 
						|
exports.deflateBound = deflateBound; | 
						|
exports.deflateCopy = deflateCopy; | 
						|
exports.deflateParams = deflateParams; | 
						|
exports.deflatePending = deflatePending; | 
						|
exports.deflatePrime = deflatePrime; | 
						|
exports.deflateTune = deflateTune; | 
						|
*/ | 
						|
 | 
						|
},{"../utils/common":1,"./adler32":3,"./crc32":4,"./messages":6,"./trees":7}],6:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
module.exports = { | 
						|
  2:      'need dictionary',     /* Z_NEED_DICT       2  */ | 
						|
  1:      'stream end',          /* Z_STREAM_END      1  */ | 
						|
  0:      '',                    /* Z_OK              0  */ | 
						|
  '-1':   'file error',          /* Z_ERRNO         (-1) */ | 
						|
  '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */ | 
						|
  '-3':   'data error',          /* Z_DATA_ERROR    (-3) */ | 
						|
  '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */ | 
						|
  '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */ | 
						|
  '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */ | 
						|
}; | 
						|
 | 
						|
},{}],7:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
/* eslint-disable space-unary-ops */ | 
						|
 | 
						|
var utils = require('../utils/common'); | 
						|
 | 
						|
/* Public constants ==========================================================*/ | 
						|
/* ===========================================================================*/ | 
						|
 | 
						|
 | 
						|
//var Z_FILTERED          = 1; | 
						|
//var Z_HUFFMAN_ONLY      = 2; | 
						|
//var Z_RLE               = 3; | 
						|
var Z_FIXED               = 4; | 
						|
//var Z_DEFAULT_STRATEGY  = 0; | 
						|
 | 
						|
/* Possible values of the data_type field (though see inflate()) */ | 
						|
var Z_BINARY              = 0; | 
						|
var Z_TEXT                = 1; | 
						|
//var Z_ASCII             = 1; // = Z_TEXT | 
						|
var Z_UNKNOWN             = 2; | 
						|
 | 
						|
/*============================================================================*/ | 
						|
 | 
						|
 | 
						|
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | 
						|
 | 
						|
// From zutil.h | 
						|
 | 
						|
var STORED_BLOCK = 0; | 
						|
var STATIC_TREES = 1; | 
						|
var DYN_TREES    = 2; | 
						|
/* The three kinds of block type */ | 
						|
 | 
						|
var MIN_MATCH    = 3; | 
						|
var MAX_MATCH    = 258; | 
						|
/* The minimum and maximum match lengths */ | 
						|
 | 
						|
// From deflate.h | 
						|
/* =========================================================================== | 
						|
 * Internal compression state. | 
						|
 */ | 
						|
 | 
						|
var LENGTH_CODES  = 29; | 
						|
/* number of length codes, not counting the special END_BLOCK code */ | 
						|
 | 
						|
var LITERALS      = 256; | 
						|
/* number of literal bytes 0..255 */ | 
						|
 | 
						|
var L_CODES       = LITERALS + 1 + LENGTH_CODES; | 
						|
/* number of Literal or Length codes, including the END_BLOCK code */ | 
						|
 | 
						|
var D_CODES       = 30; | 
						|
/* number of distance codes */ | 
						|
 | 
						|
var BL_CODES      = 19; | 
						|
/* number of codes used to transfer the bit lengths */ | 
						|
 | 
						|
var HEAP_SIZE     = 2 * L_CODES + 1; | 
						|
/* maximum heap size */ | 
						|
 | 
						|
var MAX_BITS      = 15; | 
						|
/* All codes must not exceed MAX_BITS bits */ | 
						|
 | 
						|
var Buf_size      = 16; | 
						|
/* size of bit buffer in bi_buf */ | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Constants | 
						|
 */ | 
						|
 | 
						|
var MAX_BL_BITS = 7; | 
						|
/* Bit length codes must not exceed MAX_BL_BITS bits */ | 
						|
 | 
						|
var END_BLOCK   = 256; | 
						|
/* end of block literal code */ | 
						|
 | 
						|
var REP_3_6     = 16; | 
						|
/* repeat previous bit length 3-6 times (2 bits of repeat count) */ | 
						|
 | 
						|
var REPZ_3_10   = 17; | 
						|
/* repeat a zero length 3-10 times  (3 bits of repeat count) */ | 
						|
 | 
						|
var REPZ_11_138 = 18; | 
						|
/* repeat a zero length 11-138 times  (7 bits of repeat count) */ | 
						|
 | 
						|
/* eslint-disable comma-spacing,array-bracket-spacing */ | 
						|
var extra_lbits =   /* extra bits for each length code */ | 
						|
  [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; | 
						|
 | 
						|
var extra_dbits =   /* extra bits for each distance code */ | 
						|
  [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; | 
						|
 | 
						|
var extra_blbits =  /* extra bits for each bit length code */ | 
						|
  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; | 
						|
 | 
						|
var bl_order = | 
						|
  [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; | 
						|
/* eslint-enable comma-spacing,array-bracket-spacing */ | 
						|
 | 
						|
/* The lengths of the bit length codes are sent in order of decreasing | 
						|
 * probability, to avoid transmitting the lengths for unused bit length codes. | 
						|
 */ | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Local data. These are initialized only once. | 
						|
 */ | 
						|
 | 
						|
// We pre-fill arrays with 0 to avoid uninitialized gaps | 
						|
 | 
						|
var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ | 
						|
 | 
						|
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1 | 
						|
var static_ltree  = new Array((L_CODES + 2) * 2); | 
						|
zero(static_ltree); | 
						|
/* The static literal tree. Since the bit lengths are imposed, there is no | 
						|
 * need for the L_CODES extra codes used during heap construction. However | 
						|
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | 
						|
 * below). | 
						|
 */ | 
						|
 | 
						|
var static_dtree  = new Array(D_CODES * 2); | 
						|
zero(static_dtree); | 
						|
/* The static distance tree. (Actually a trivial tree since all codes use | 
						|
 * 5 bits.) | 
						|
 */ | 
						|
 | 
						|
var _dist_code    = new Array(DIST_CODE_LEN); | 
						|
zero(_dist_code); | 
						|
/* Distance codes. The first 256 values correspond to the distances | 
						|
 * 3 .. 258, the last 256 values correspond to the top 8 bits of | 
						|
 * the 15 bit distances. | 
						|
 */ | 
						|
 | 
						|
var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1); | 
						|
zero(_length_code); | 
						|
/* length code for each normalized match length (0 == MIN_MATCH) */ | 
						|
 | 
						|
var base_length   = new Array(LENGTH_CODES); | 
						|
zero(base_length); | 
						|
/* First normalized length for each code (0 = MIN_MATCH) */ | 
						|
 | 
						|
var base_dist     = new Array(D_CODES); | 
						|
zero(base_dist); | 
						|
/* First normalized distance for each code (0 = distance of 1) */ | 
						|
 | 
						|
 | 
						|
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { | 
						|
 | 
						|
  this.static_tree  = static_tree;  /* static tree or NULL */ | 
						|
  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */ | 
						|
  this.extra_base   = extra_base;   /* base index for extra_bits */ | 
						|
  this.elems        = elems;        /* max number of elements in the tree */ | 
						|
  this.max_length   = max_length;   /* max bit length for the codes */ | 
						|
 | 
						|
  // show if `static_tree` has data or dummy - needed for monomorphic objects | 
						|
  this.has_stree    = static_tree && static_tree.length; | 
						|
} | 
						|
 | 
						|
 | 
						|
var static_l_desc; | 
						|
var static_d_desc; | 
						|
var static_bl_desc; | 
						|
 | 
						|
 | 
						|
function TreeDesc(dyn_tree, stat_desc) { | 
						|
  this.dyn_tree = dyn_tree;     /* the dynamic tree */ | 
						|
  this.max_code = 0;            /* largest code with non zero frequency */ | 
						|
  this.stat_desc = stat_desc;   /* the corresponding static tree */ | 
						|
} | 
						|
 | 
						|
 | 
						|
 | 
						|
function d_code(dist) { | 
						|
  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Output a short LSB first on the stream. | 
						|
 * IN assertion: there is enough room in pendingBuf. | 
						|
 */ | 
						|
function put_short(s, w) { | 
						|
//    put_byte(s, (uch)((w) & 0xff)); | 
						|
//    put_byte(s, (uch)((ush)(w) >> 8)); | 
						|
  s.pending_buf[s.pending++] = (w) & 0xff; | 
						|
  s.pending_buf[s.pending++] = (w >>> 8) & 0xff; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send a value on a given number of bits. | 
						|
 * IN assertion: length <= 16 and value fits in length bits. | 
						|
 */ | 
						|
function send_bits(s, value, length) { | 
						|
  if (s.bi_valid > (Buf_size - length)) { | 
						|
    s.bi_buf |= (value << s.bi_valid) & 0xffff; | 
						|
    put_short(s, s.bi_buf); | 
						|
    s.bi_buf = value >> (Buf_size - s.bi_valid); | 
						|
    s.bi_valid += length - Buf_size; | 
						|
  } else { | 
						|
    s.bi_buf |= (value << s.bi_valid) & 0xffff; | 
						|
    s.bi_valid += length; | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
function send_code(s, c, tree) { | 
						|
  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Reverse the first len bits of a code, using straightforward code (a faster | 
						|
 * method would use a table) | 
						|
 * IN assertion: 1 <= len <= 15 | 
						|
 */ | 
						|
function bi_reverse(code, len) { | 
						|
  var res = 0; | 
						|
  do { | 
						|
    res |= code & 1; | 
						|
    code >>>= 1; | 
						|
    res <<= 1; | 
						|
  } while (--len > 0); | 
						|
  return res >>> 1; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Flush the bit buffer, keeping at most 7 bits in it. | 
						|
 */ | 
						|
function bi_flush(s) { | 
						|
  if (s.bi_valid === 16) { | 
						|
    put_short(s, s.bi_buf); | 
						|
    s.bi_buf = 0; | 
						|
    s.bi_valid = 0; | 
						|
 | 
						|
  } else if (s.bi_valid >= 8) { | 
						|
    s.pending_buf[s.pending++] = s.bi_buf & 0xff; | 
						|
    s.bi_buf >>= 8; | 
						|
    s.bi_valid -= 8; | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Compute the optimal bit lengths for a tree and update the total bit length | 
						|
 * for the current block. | 
						|
 * IN assertion: the fields freq and dad are set, heap[heap_max] and | 
						|
 *    above are the tree nodes sorted by increasing frequency. | 
						|
 * OUT assertions: the field len is set to the optimal bit length, the | 
						|
 *     array bl_count contains the frequencies for each bit length. | 
						|
 *     The length opt_len is updated; static_len is also updated if stree is | 
						|
 *     not null. | 
						|
 */ | 
						|
function gen_bitlen(s, desc) | 
						|
//    deflate_state *s; | 
						|
//    tree_desc *desc;    /* the tree descriptor */ | 
						|
{ | 
						|
  var tree            = desc.dyn_tree; | 
						|
  var max_code        = desc.max_code; | 
						|
  var stree           = desc.stat_desc.static_tree; | 
						|
  var has_stree       = desc.stat_desc.has_stree; | 
						|
  var extra           = desc.stat_desc.extra_bits; | 
						|
  var base            = desc.stat_desc.extra_base; | 
						|
  var max_length      = desc.stat_desc.max_length; | 
						|
  var h;              /* heap index */ | 
						|
  var n, m;           /* iterate over the tree elements */ | 
						|
  var bits;           /* bit length */ | 
						|
  var xbits;          /* extra bits */ | 
						|
  var f;              /* frequency */ | 
						|
  var overflow = 0;   /* number of elements with bit length too large */ | 
						|
 | 
						|
  for (bits = 0; bits <= MAX_BITS; bits++) { | 
						|
    s.bl_count[bits] = 0; | 
						|
  } | 
						|
 | 
						|
  /* In a first pass, compute the optimal bit lengths (which may | 
						|
   * overflow in the case of the bit length tree). | 
						|
   */ | 
						|
  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ | 
						|
 | 
						|
  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { | 
						|
    n = s.heap[h]; | 
						|
    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; | 
						|
    if (bits > max_length) { | 
						|
      bits = max_length; | 
						|
      overflow++; | 
						|
    } | 
						|
    tree[n * 2 + 1]/*.Len*/ = bits; | 
						|
    /* We overwrite tree[n].Dad which is no longer needed */ | 
						|
 | 
						|
    if (n > max_code) { continue; } /* not a leaf node */ | 
						|
 | 
						|
    s.bl_count[bits]++; | 
						|
    xbits = 0; | 
						|
    if (n >= base) { | 
						|
      xbits = extra[n - base]; | 
						|
    } | 
						|
    f = tree[n * 2]/*.Freq*/; | 
						|
    s.opt_len += f * (bits + xbits); | 
						|
    if (has_stree) { | 
						|
      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); | 
						|
    } | 
						|
  } | 
						|
  if (overflow === 0) { return; } | 
						|
 | 
						|
  // Trace((stderr,"\nbit length overflow\n")); | 
						|
  /* This happens for example on obj2 and pic of the Calgary corpus */ | 
						|
 | 
						|
  /* Find the first bit length which could increase: */ | 
						|
  do { | 
						|
    bits = max_length - 1; | 
						|
    while (s.bl_count[bits] === 0) { bits--; } | 
						|
    s.bl_count[bits]--;      /* move one leaf down the tree */ | 
						|
    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ | 
						|
    s.bl_count[max_length]--; | 
						|
    /* The brother of the overflow item also moves one step up, | 
						|
     * but this does not affect bl_count[max_length] | 
						|
     */ | 
						|
    overflow -= 2; | 
						|
  } while (overflow > 0); | 
						|
 | 
						|
  /* Now recompute all bit lengths, scanning in increasing frequency. | 
						|
   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | 
						|
   * lengths instead of fixing only the wrong ones. This idea is taken | 
						|
   * from 'ar' written by Haruhiko Okumura.) | 
						|
   */ | 
						|
  for (bits = max_length; bits !== 0; bits--) { | 
						|
    n = s.bl_count[bits]; | 
						|
    while (n !== 0) { | 
						|
      m = s.heap[--h]; | 
						|
      if (m > max_code) { continue; } | 
						|
      if (tree[m * 2 + 1]/*.Len*/ !== bits) { | 
						|
        // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | 
						|
        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; | 
						|
        tree[m * 2 + 1]/*.Len*/ = bits; | 
						|
      } | 
						|
      n--; | 
						|
    } | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Generate the codes for a given tree and bit counts (which need not be | 
						|
 * optimal). | 
						|
 * IN assertion: the array bl_count contains the bit length statistics for | 
						|
 * the given tree and the field len is set for all tree elements. | 
						|
 * OUT assertion: the field code is set for all tree elements of non | 
						|
 *     zero code length. | 
						|
 */ | 
						|
function gen_codes(tree, max_code, bl_count) | 
						|
//    ct_data *tree;             /* the tree to decorate */ | 
						|
//    int max_code;              /* largest code with non zero frequency */ | 
						|
//    ushf *bl_count;            /* number of codes at each bit length */ | 
						|
{ | 
						|
  var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ | 
						|
  var code = 0;              /* running code value */ | 
						|
  var bits;                  /* bit index */ | 
						|
  var n;                     /* code index */ | 
						|
 | 
						|
  /* The distribution counts are first used to generate the code values | 
						|
   * without bit reversal. | 
						|
   */ | 
						|
  for (bits = 1; bits <= MAX_BITS; bits++) { | 
						|
    next_code[bits] = code = (code + bl_count[bits - 1]) << 1; | 
						|
  } | 
						|
  /* Check that the bit counts in bl_count are consistent. The last code | 
						|
   * must be all ones. | 
						|
   */ | 
						|
  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | 
						|
  //        "inconsistent bit counts"); | 
						|
  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | 
						|
 | 
						|
  for (n = 0;  n <= max_code; n++) { | 
						|
    var len = tree[n * 2 + 1]/*.Len*/; | 
						|
    if (len === 0) { continue; } | 
						|
    /* Now reverse the bits */ | 
						|
    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len); | 
						|
 | 
						|
    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | 
						|
    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Initialize the various 'constant' tables. | 
						|
 */ | 
						|
function tr_static_init() { | 
						|
  var n;        /* iterates over tree elements */ | 
						|
  var bits;     /* bit counter */ | 
						|
  var length;   /* length value */ | 
						|
  var code;     /* code value */ | 
						|
  var dist;     /* distance index */ | 
						|
  var bl_count = new Array(MAX_BITS + 1); | 
						|
  /* number of codes at each bit length for an optimal tree */ | 
						|
 | 
						|
  // do check in _tr_init() | 
						|
  //if (static_init_done) return; | 
						|
 | 
						|
  /* For some embedded targets, global variables are not initialized: */ | 
						|
/*#ifdef NO_INIT_GLOBAL_POINTERS | 
						|
  static_l_desc.static_tree = static_ltree; | 
						|
  static_l_desc.extra_bits = extra_lbits; | 
						|
  static_d_desc.static_tree = static_dtree; | 
						|
  static_d_desc.extra_bits = extra_dbits; | 
						|
  static_bl_desc.extra_bits = extra_blbits; | 
						|
#endif*/ | 
						|
 | 
						|
  /* Initialize the mapping length (0..255) -> length code (0..28) */ | 
						|
  length = 0; | 
						|
  for (code = 0; code < LENGTH_CODES - 1; code++) { | 
						|
    base_length[code] = length; | 
						|
    for (n = 0; n < (1 << extra_lbits[code]); n++) { | 
						|
      _length_code[length++] = code; | 
						|
    } | 
						|
  } | 
						|
  //Assert (length == 256, "tr_static_init: length != 256"); | 
						|
  /* Note that the length 255 (match length 258) can be represented | 
						|
   * in two different ways: code 284 + 5 bits or code 285, so we | 
						|
   * overwrite length_code[255] to use the best encoding: | 
						|
   */ | 
						|
  _length_code[length - 1] = code; | 
						|
 | 
						|
  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | 
						|
  dist = 0; | 
						|
  for (code = 0; code < 16; code++) { | 
						|
    base_dist[code] = dist; | 
						|
    for (n = 0; n < (1 << extra_dbits[code]); n++) { | 
						|
      _dist_code[dist++] = code; | 
						|
    } | 
						|
  } | 
						|
  //Assert (dist == 256, "tr_static_init: dist != 256"); | 
						|
  dist >>= 7; /* from now on, all distances are divided by 128 */ | 
						|
  for (; code < D_CODES; code++) { | 
						|
    base_dist[code] = dist << 7; | 
						|
    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { | 
						|
      _dist_code[256 + dist++] = code; | 
						|
    } | 
						|
  } | 
						|
  //Assert (dist == 256, "tr_static_init: 256+dist != 512"); | 
						|
 | 
						|
  /* Construct the codes of the static literal tree */ | 
						|
  for (bits = 0; bits <= MAX_BITS; bits++) { | 
						|
    bl_count[bits] = 0; | 
						|
  } | 
						|
 | 
						|
  n = 0; | 
						|
  while (n <= 143) { | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 8; | 
						|
    n++; | 
						|
    bl_count[8]++; | 
						|
  } | 
						|
  while (n <= 255) { | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 9; | 
						|
    n++; | 
						|
    bl_count[9]++; | 
						|
  } | 
						|
  while (n <= 279) { | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 7; | 
						|
    n++; | 
						|
    bl_count[7]++; | 
						|
  } | 
						|
  while (n <= 287) { | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 8; | 
						|
    n++; | 
						|
    bl_count[8]++; | 
						|
  } | 
						|
  /* Codes 286 and 287 do not exist, but we must include them in the | 
						|
   * tree construction to get a canonical Huffman tree (longest code | 
						|
   * all ones) | 
						|
   */ | 
						|
  gen_codes(static_ltree, L_CODES + 1, bl_count); | 
						|
 | 
						|
  /* The static distance tree is trivial: */ | 
						|
  for (n = 0; n < D_CODES; n++) { | 
						|
    static_dtree[n * 2 + 1]/*.Len*/ = 5; | 
						|
    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); | 
						|
  } | 
						|
 | 
						|
  // Now data ready and we can init static trees | 
						|
  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); | 
						|
  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS); | 
						|
  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS); | 
						|
 | 
						|
  //static_init_done = true; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Initialize a new block. | 
						|
 */ | 
						|
function init_block(s) { | 
						|
  var n; /* iterates over tree elements */ | 
						|
 | 
						|
  /* Initialize the trees. */ | 
						|
  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } | 
						|
  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } | 
						|
  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } | 
						|
 | 
						|
  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; | 
						|
  s.opt_len = s.static_len = 0; | 
						|
  s.last_lit = s.matches = 0; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Flush the bit buffer and align the output on a byte boundary | 
						|
 */ | 
						|
function bi_windup(s) | 
						|
{ | 
						|
  if (s.bi_valid > 8) { | 
						|
    put_short(s, s.bi_buf); | 
						|
  } else if (s.bi_valid > 0) { | 
						|
    //put_byte(s, (Byte)s->bi_buf); | 
						|
    s.pending_buf[s.pending++] = s.bi_buf; | 
						|
  } | 
						|
  s.bi_buf = 0; | 
						|
  s.bi_valid = 0; | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Copy a stored block, storing first the length and its | 
						|
 * one's complement if requested. | 
						|
 */ | 
						|
function copy_block(s, buf, len, header) | 
						|
//DeflateState *s; | 
						|
//charf    *buf;    /* the input data */ | 
						|
//unsigned len;     /* its length */ | 
						|
//int      header;  /* true if block header must be written */ | 
						|
{ | 
						|
  bi_windup(s);        /* align on byte boundary */ | 
						|
 | 
						|
  if (header) { | 
						|
    put_short(s, len); | 
						|
    put_short(s, ~len); | 
						|
  } | 
						|
//  while (len--) { | 
						|
//    put_byte(s, *buf++); | 
						|
//  } | 
						|
  utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); | 
						|
  s.pending += len; | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Compares to subtrees, using the tree depth as tie breaker when | 
						|
 * the subtrees have equal frequency. This minimizes the worst case length. | 
						|
 */ | 
						|
function smaller(tree, n, m, depth) { | 
						|
  var _n2 = n * 2; | 
						|
  var _m2 = m * 2; | 
						|
  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || | 
						|
         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Restore the heap property by moving down the tree starting at node k, | 
						|
 * exchanging a node with the smallest of its two sons if necessary, stopping | 
						|
 * when the heap property is re-established (each father smaller than its | 
						|
 * two sons). | 
						|
 */ | 
						|
function pqdownheap(s, tree, k) | 
						|
//    deflate_state *s; | 
						|
//    ct_data *tree;  /* the tree to restore */ | 
						|
//    int k;               /* node to move down */ | 
						|
{ | 
						|
  var v = s.heap[k]; | 
						|
  var j = k << 1;  /* left son of k */ | 
						|
  while (j <= s.heap_len) { | 
						|
    /* Set j to the smallest of the two sons: */ | 
						|
    if (j < s.heap_len && | 
						|
      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { | 
						|
      j++; | 
						|
    } | 
						|
    /* Exit if v is smaller than both sons */ | 
						|
    if (smaller(tree, v, s.heap[j], s.depth)) { break; } | 
						|
 | 
						|
    /* Exchange v with the smallest son */ | 
						|
    s.heap[k] = s.heap[j]; | 
						|
    k = j; | 
						|
 | 
						|
    /* And continue down the tree, setting j to the left son of k */ | 
						|
    j <<= 1; | 
						|
  } | 
						|
  s.heap[k] = v; | 
						|
} | 
						|
 | 
						|
 | 
						|
// inlined manually | 
						|
// var SMALLEST = 1; | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send the block data compressed using the given Huffman trees | 
						|
 */ | 
						|
function compress_block(s, ltree, dtree) | 
						|
//    deflate_state *s; | 
						|
//    const ct_data *ltree; /* literal tree */ | 
						|
//    const ct_data *dtree; /* distance tree */ | 
						|
{ | 
						|
  var dist;           /* distance of matched string */ | 
						|
  var lc;             /* match length or unmatched char (if dist == 0) */ | 
						|
  var lx = 0;         /* running index in l_buf */ | 
						|
  var code;           /* the code to send */ | 
						|
  var extra;          /* number of extra bits to send */ | 
						|
 | 
						|
  if (s.last_lit !== 0) { | 
						|
    do { | 
						|
      dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); | 
						|
      lc = s.pending_buf[s.l_buf + lx]; | 
						|
      lx++; | 
						|
 | 
						|
      if (dist === 0) { | 
						|
        send_code(s, lc, ltree); /* send a literal byte */ | 
						|
        //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | 
						|
      } else { | 
						|
        /* Here, lc is the match length - MIN_MATCH */ | 
						|
        code = _length_code[lc]; | 
						|
        send_code(s, code + LITERALS + 1, ltree); /* send the length code */ | 
						|
        extra = extra_lbits[code]; | 
						|
        if (extra !== 0) { | 
						|
          lc -= base_length[code]; | 
						|
          send_bits(s, lc, extra);       /* send the extra length bits */ | 
						|
        } | 
						|
        dist--; /* dist is now the match distance - 1 */ | 
						|
        code = d_code(dist); | 
						|
        //Assert (code < D_CODES, "bad d_code"); | 
						|
 | 
						|
        send_code(s, code, dtree);       /* send the distance code */ | 
						|
        extra = extra_dbits[code]; | 
						|
        if (extra !== 0) { | 
						|
          dist -= base_dist[code]; | 
						|
          send_bits(s, dist, extra);   /* send the extra distance bits */ | 
						|
        } | 
						|
      } /* literal or match pair ? */ | 
						|
 | 
						|
      /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | 
						|
      //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | 
						|
      //       "pendingBuf overflow"); | 
						|
 | 
						|
    } while (lx < s.last_lit); | 
						|
  } | 
						|
 | 
						|
  send_code(s, END_BLOCK, ltree); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Construct one Huffman tree and assigns the code bit strings and lengths. | 
						|
 * Update the total bit length for the current block. | 
						|
 * IN assertion: the field freq is set for all tree elements. | 
						|
 * OUT assertions: the fields len and code are set to the optimal bit length | 
						|
 *     and corresponding code. The length opt_len is updated; static_len is | 
						|
 *     also updated if stree is not null. The field max_code is set. | 
						|
 */ | 
						|
function build_tree(s, desc) | 
						|
//    deflate_state *s; | 
						|
//    tree_desc *desc; /* the tree descriptor */ | 
						|
{ | 
						|
  var tree     = desc.dyn_tree; | 
						|
  var stree    = desc.stat_desc.static_tree; | 
						|
  var has_stree = desc.stat_desc.has_stree; | 
						|
  var elems    = desc.stat_desc.elems; | 
						|
  var n, m;          /* iterate over heap elements */ | 
						|
  var max_code = -1; /* largest code with non zero frequency */ | 
						|
  var node;          /* new node being created */ | 
						|
 | 
						|
  /* Construct the initial heap, with least frequent element in | 
						|
   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | 
						|
   * heap[0] is not used. | 
						|
   */ | 
						|
  s.heap_len = 0; | 
						|
  s.heap_max = HEAP_SIZE; | 
						|
 | 
						|
  for (n = 0; n < elems; n++) { | 
						|
    if (tree[n * 2]/*.Freq*/ !== 0) { | 
						|
      s.heap[++s.heap_len] = max_code = n; | 
						|
      s.depth[n] = 0; | 
						|
 | 
						|
    } else { | 
						|
      tree[n * 2 + 1]/*.Len*/ = 0; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  /* The pkzip format requires that at least one distance code exists, | 
						|
   * and that at least one bit should be sent even if there is only one | 
						|
   * possible code. So to avoid special checks later on we force at least | 
						|
   * two codes of non zero frequency. | 
						|
   */ | 
						|
  while (s.heap_len < 2) { | 
						|
    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); | 
						|
    tree[node * 2]/*.Freq*/ = 1; | 
						|
    s.depth[node] = 0; | 
						|
    s.opt_len--; | 
						|
 | 
						|
    if (has_stree) { | 
						|
      s.static_len -= stree[node * 2 + 1]/*.Len*/; | 
						|
    } | 
						|
    /* node is 0 or 1 so it does not have extra bits */ | 
						|
  } | 
						|
  desc.max_code = max_code; | 
						|
 | 
						|
  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | 
						|
   * establish sub-heaps of increasing lengths: | 
						|
   */ | 
						|
  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } | 
						|
 | 
						|
  /* Construct the Huffman tree by repeatedly combining the least two | 
						|
   * frequent nodes. | 
						|
   */ | 
						|
  node = elems;              /* next internal node of the tree */ | 
						|
  do { | 
						|
    //pqremove(s, tree, n);  /* n = node of least frequency */ | 
						|
    /*** pqremove ***/ | 
						|
    n = s.heap[1/*SMALLEST*/]; | 
						|
    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; | 
						|
    pqdownheap(s, tree, 1/*SMALLEST*/); | 
						|
    /***/ | 
						|
 | 
						|
    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ | 
						|
 | 
						|
    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ | 
						|
    s.heap[--s.heap_max] = m; | 
						|
 | 
						|
    /* Create a new node father of n and m */ | 
						|
    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; | 
						|
    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; | 
						|
    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; | 
						|
 | 
						|
    /* and insert the new node in the heap */ | 
						|
    s.heap[1/*SMALLEST*/] = node++; | 
						|
    pqdownheap(s, tree, 1/*SMALLEST*/); | 
						|
 | 
						|
  } while (s.heap_len >= 2); | 
						|
 | 
						|
  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; | 
						|
 | 
						|
  /* At this point, the fields freq and dad are set. We can now | 
						|
   * generate the bit lengths. | 
						|
   */ | 
						|
  gen_bitlen(s, desc); | 
						|
 | 
						|
  /* The field len is now set, we can generate the bit codes */ | 
						|
  gen_codes(tree, max_code, s.bl_count); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Scan a literal or distance tree to determine the frequencies of the codes | 
						|
 * in the bit length tree. | 
						|
 */ | 
						|
function scan_tree(s, tree, max_code) | 
						|
//    deflate_state *s; | 
						|
//    ct_data *tree;   /* the tree to be scanned */ | 
						|
//    int max_code;    /* and its largest code of non zero frequency */ | 
						|
{ | 
						|
  var n;                     /* iterates over all tree elements */ | 
						|
  var prevlen = -1;          /* last emitted length */ | 
						|
  var curlen;                /* length of current code */ | 
						|
 | 
						|
  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | 
						|
 | 
						|
  var count = 0;             /* repeat count of the current code */ | 
						|
  var max_count = 7;         /* max repeat count */ | 
						|
  var min_count = 4;         /* min repeat count */ | 
						|
 | 
						|
  if (nextlen === 0) { | 
						|
    max_count = 138; | 
						|
    min_count = 3; | 
						|
  } | 
						|
  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ | 
						|
 | 
						|
  for (n = 0; n <= max_code; n++) { | 
						|
    curlen = nextlen; | 
						|
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | 
						|
 | 
						|
    if (++count < max_count && curlen === nextlen) { | 
						|
      continue; | 
						|
 | 
						|
    } else if (count < min_count) { | 
						|
      s.bl_tree[curlen * 2]/*.Freq*/ += count; | 
						|
 | 
						|
    } else if (curlen !== 0) { | 
						|
 | 
						|
      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } | 
						|
      s.bl_tree[REP_3_6 * 2]/*.Freq*/++; | 
						|
 | 
						|
    } else if (count <= 10) { | 
						|
      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; | 
						|
 | 
						|
    } else { | 
						|
      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; | 
						|
    } | 
						|
 | 
						|
    count = 0; | 
						|
    prevlen = curlen; | 
						|
 | 
						|
    if (nextlen === 0) { | 
						|
      max_count = 138; | 
						|
      min_count = 3; | 
						|
 | 
						|
    } else if (curlen === nextlen) { | 
						|
      max_count = 6; | 
						|
      min_count = 3; | 
						|
 | 
						|
    } else { | 
						|
      max_count = 7; | 
						|
      min_count = 4; | 
						|
    } | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send a literal or distance tree in compressed form, using the codes in | 
						|
 * bl_tree. | 
						|
 */ | 
						|
function send_tree(s, tree, max_code) | 
						|
//    deflate_state *s; | 
						|
//    ct_data *tree; /* the tree to be scanned */ | 
						|
//    int max_code;       /* and its largest code of non zero frequency */ | 
						|
{ | 
						|
  var n;                     /* iterates over all tree elements */ | 
						|
  var prevlen = -1;          /* last emitted length */ | 
						|
  var curlen;                /* length of current code */ | 
						|
 | 
						|
  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | 
						|
 | 
						|
  var count = 0;             /* repeat count of the current code */ | 
						|
  var max_count = 7;         /* max repeat count */ | 
						|
  var min_count = 4;         /* min repeat count */ | 
						|
 | 
						|
  /* tree[max_code+1].Len = -1; */  /* guard already set */ | 
						|
  if (nextlen === 0) { | 
						|
    max_count = 138; | 
						|
    min_count = 3; | 
						|
  } | 
						|
 | 
						|
  for (n = 0; n <= max_code; n++) { | 
						|
    curlen = nextlen; | 
						|
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | 
						|
 | 
						|
    if (++count < max_count && curlen === nextlen) { | 
						|
      continue; | 
						|
 | 
						|
    } else if (count < min_count) { | 
						|
      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); | 
						|
 | 
						|
    } else if (curlen !== 0) { | 
						|
      if (curlen !== prevlen) { | 
						|
        send_code(s, curlen, s.bl_tree); | 
						|
        count--; | 
						|
      } | 
						|
      //Assert(count >= 3 && count <= 6, " 3_6?"); | 
						|
      send_code(s, REP_3_6, s.bl_tree); | 
						|
      send_bits(s, count - 3, 2); | 
						|
 | 
						|
    } else if (count <= 10) { | 
						|
      send_code(s, REPZ_3_10, s.bl_tree); | 
						|
      send_bits(s, count - 3, 3); | 
						|
 | 
						|
    } else { | 
						|
      send_code(s, REPZ_11_138, s.bl_tree); | 
						|
      send_bits(s, count - 11, 7); | 
						|
    } | 
						|
 | 
						|
    count = 0; | 
						|
    prevlen = curlen; | 
						|
    if (nextlen === 0) { | 
						|
      max_count = 138; | 
						|
      min_count = 3; | 
						|
 | 
						|
    } else if (curlen === nextlen) { | 
						|
      max_count = 6; | 
						|
      min_count = 3; | 
						|
 | 
						|
    } else { | 
						|
      max_count = 7; | 
						|
      min_count = 4; | 
						|
    } | 
						|
  } | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Construct the Huffman tree for the bit lengths and return the index in | 
						|
 * bl_order of the last bit length code to send. | 
						|
 */ | 
						|
function build_bl_tree(s) { | 
						|
  var max_blindex;  /* index of last bit length code of non zero freq */ | 
						|
 | 
						|
  /* Determine the bit length frequencies for literal and distance trees */ | 
						|
  scan_tree(s, s.dyn_ltree, s.l_desc.max_code); | 
						|
  scan_tree(s, s.dyn_dtree, s.d_desc.max_code); | 
						|
 | 
						|
  /* Build the bit length tree: */ | 
						|
  build_tree(s, s.bl_desc); | 
						|
  /* opt_len now includes the length of the tree representations, except | 
						|
   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | 
						|
   */ | 
						|
 | 
						|
  /* Determine the number of bit length codes to send. The pkzip format | 
						|
   * requires that at least 4 bit length codes be sent. (appnote.txt says | 
						|
   * 3 but the actual value used is 4.) | 
						|
   */ | 
						|
  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { | 
						|
    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { | 
						|
      break; | 
						|
    } | 
						|
  } | 
						|
  /* Update opt_len to include the bit length tree and counts */ | 
						|
  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | 
						|
  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | 
						|
  //        s->opt_len, s->static_len)); | 
						|
 | 
						|
  return max_blindex; | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send the header for a block using dynamic Huffman trees: the counts, the | 
						|
 * lengths of the bit length codes, the literal tree and the distance tree. | 
						|
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 
						|
 */ | 
						|
function send_all_trees(s, lcodes, dcodes, blcodes) | 
						|
//    deflate_state *s; | 
						|
//    int lcodes, dcodes, blcodes; /* number of codes for each tree */ | 
						|
{ | 
						|
  var rank;                    /* index in bl_order */ | 
						|
 | 
						|
  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | 
						|
  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | 
						|
  //        "too many codes"); | 
						|
  //Tracev((stderr, "\nbl counts: ")); | 
						|
  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ | 
						|
  send_bits(s, dcodes - 1,   5); | 
						|
  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */ | 
						|
  for (rank = 0; rank < blcodes; rank++) { | 
						|
    //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | 
						|
    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); | 
						|
  } | 
						|
  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | 
						|
 | 
						|
  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ | 
						|
  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | 
						|
 | 
						|
  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ | 
						|
  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Check if the data type is TEXT or BINARY, using the following algorithm: | 
						|
 * - TEXT if the two conditions below are satisfied: | 
						|
 *    a) There are no non-portable control characters belonging to the | 
						|
 *       "black list" (0..6, 14..25, 28..31). | 
						|
 *    b) There is at least one printable character belonging to the | 
						|
 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | 
						|
 * - BINARY otherwise. | 
						|
 * - The following partially-portable control characters form a | 
						|
 *   "gray list" that is ignored in this detection algorithm: | 
						|
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | 
						|
 * IN assertion: the fields Freq of dyn_ltree are set. | 
						|
 */ | 
						|
function detect_data_type(s) { | 
						|
  /* black_mask is the bit mask of black-listed bytes | 
						|
   * set bits 0..6, 14..25, and 28..31 | 
						|
   * 0xf3ffc07f = binary 11110011111111111100000001111111 | 
						|
   */ | 
						|
  var black_mask = 0xf3ffc07f; | 
						|
  var n; | 
						|
 | 
						|
  /* Check for non-textual ("black-listed") bytes. */ | 
						|
  for (n = 0; n <= 31; n++, black_mask >>>= 1) { | 
						|
    if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { | 
						|
      return Z_BINARY; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  /* Check for textual ("white-listed") bytes. */ | 
						|
  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || | 
						|
      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { | 
						|
    return Z_TEXT; | 
						|
  } | 
						|
  for (n = 32; n < LITERALS; n++) { | 
						|
    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { | 
						|
      return Z_TEXT; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  /* There are no "black-listed" or "white-listed" bytes: | 
						|
   * this stream either is empty or has tolerated ("gray-listed") bytes only. | 
						|
   */ | 
						|
  return Z_BINARY; | 
						|
} | 
						|
 | 
						|
 | 
						|
var static_init_done = false; | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Initialize the tree data structures for a new zlib stream. | 
						|
 */ | 
						|
function _tr_init(s) | 
						|
{ | 
						|
 | 
						|
  if (!static_init_done) { | 
						|
    tr_static_init(); | 
						|
    static_init_done = true; | 
						|
  } | 
						|
 | 
						|
  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc); | 
						|
  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc); | 
						|
  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); | 
						|
 | 
						|
  s.bi_buf = 0; | 
						|
  s.bi_valid = 0; | 
						|
 | 
						|
  /* Initialize the first block of the first file: */ | 
						|
  init_block(s); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send a stored block | 
						|
 */ | 
						|
function _tr_stored_block(s, buf, stored_len, last) | 
						|
//DeflateState *s; | 
						|
//charf *buf;       /* input block */ | 
						|
//ulg stored_len;   /* length of input block */ | 
						|
//int last;         /* one if this is the last block for a file */ | 
						|
{ | 
						|
  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */ | 
						|
  copy_block(s, buf, stored_len, true); /* with header */ | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Send one empty static block to give enough lookahead for inflate. | 
						|
 * This takes 10 bits, of which 7 may remain in the bit buffer. | 
						|
 */ | 
						|
function _tr_align(s) { | 
						|
  send_bits(s, STATIC_TREES << 1, 3); | 
						|
  send_code(s, END_BLOCK, static_ltree); | 
						|
  bi_flush(s); | 
						|
} | 
						|
 | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Determine the best encoding for the current block: dynamic trees, static | 
						|
 * trees or store, and output the encoded block to the zip file. | 
						|
 */ | 
						|
function _tr_flush_block(s, buf, stored_len, last) | 
						|
//DeflateState *s; | 
						|
//charf *buf;       /* input block, or NULL if too old */ | 
						|
//ulg stored_len;   /* length of input block */ | 
						|
//int last;         /* one if this is the last block for a file */ | 
						|
{ | 
						|
  var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */ | 
						|
  var max_blindex = 0;        /* index of last bit length code of non zero freq */ | 
						|
 | 
						|
  /* Build the Huffman trees unless a stored block is forced */ | 
						|
  if (s.level > 0) { | 
						|
 | 
						|
    /* Check if the file is binary or text */ | 
						|
    if (s.strm.data_type === Z_UNKNOWN) { | 
						|
      s.strm.data_type = detect_data_type(s); | 
						|
    } | 
						|
 | 
						|
    /* Construct the literal and distance trees */ | 
						|
    build_tree(s, s.l_desc); | 
						|
    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | 
						|
    //        s->static_len)); | 
						|
 | 
						|
    build_tree(s, s.d_desc); | 
						|
    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | 
						|
    //        s->static_len)); | 
						|
    /* At this point, opt_len and static_len are the total bit lengths of | 
						|
     * the compressed block data, excluding the tree representations. | 
						|
     */ | 
						|
 | 
						|
    /* Build the bit length tree for the above two trees, and get the index | 
						|
     * in bl_order of the last bit length code to send. | 
						|
     */ | 
						|
    max_blindex = build_bl_tree(s); | 
						|
 | 
						|
    /* Determine the best encoding. Compute the block lengths in bytes. */ | 
						|
    opt_lenb = (s.opt_len + 3 + 7) >>> 3; | 
						|
    static_lenb = (s.static_len + 3 + 7) >>> 3; | 
						|
 | 
						|
    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | 
						|
    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | 
						|
    //        s->last_lit)); | 
						|
 | 
						|
    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } | 
						|
 | 
						|
  } else { | 
						|
    // Assert(buf != (char*)0, "lost buf"); | 
						|
    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | 
						|
  } | 
						|
 | 
						|
  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { | 
						|
    /* 4: two words for the lengths */ | 
						|
 | 
						|
    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 
						|
     * Otherwise we can't have processed more than WSIZE input bytes since | 
						|
     * the last block flush, because compression would have been | 
						|
     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 
						|
     * transform a block into a stored block. | 
						|
     */ | 
						|
    _tr_stored_block(s, buf, stored_len, last); | 
						|
 | 
						|
  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { | 
						|
 | 
						|
    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); | 
						|
    compress_block(s, static_ltree, static_dtree); | 
						|
 | 
						|
  } else { | 
						|
    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); | 
						|
    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); | 
						|
    compress_block(s, s.dyn_ltree, s.dyn_dtree); | 
						|
  } | 
						|
  // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | 
						|
  /* The above check is made mod 2^32, for files larger than 512 MB | 
						|
   * and uLong implemented on 32 bits. | 
						|
   */ | 
						|
  init_block(s); | 
						|
 | 
						|
  if (last) { | 
						|
    bi_windup(s); | 
						|
  } | 
						|
  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | 
						|
  //       s->compressed_len-7*last)); | 
						|
} | 
						|
 | 
						|
/* =========================================================================== | 
						|
 * Save the match info and tally the frequency counts. Return true if | 
						|
 * the current block must be flushed. | 
						|
 */ | 
						|
function _tr_tally(s, dist, lc) | 
						|
//    deflate_state *s; | 
						|
//    unsigned dist;  /* distance of matched string */ | 
						|
//    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ | 
						|
{ | 
						|
  //var out_length, in_length, dcode; | 
						|
 | 
						|
  s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff; | 
						|
  s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; | 
						|
 | 
						|
  s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; | 
						|
  s.last_lit++; | 
						|
 | 
						|
  if (dist === 0) { | 
						|
    /* lc is the unmatched char */ | 
						|
    s.dyn_ltree[lc * 2]/*.Freq*/++; | 
						|
  } else { | 
						|
    s.matches++; | 
						|
    /* Here, lc is the match length - MIN_MATCH */ | 
						|
    dist--;             /* dist = match distance - 1 */ | 
						|
    //Assert((ush)dist < (ush)MAX_DIST(s) && | 
						|
    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | 
						|
    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); | 
						|
 | 
						|
    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; | 
						|
    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; | 
						|
  } | 
						|
 | 
						|
// (!) This block is disabled in zlib defaults, | 
						|
// don't enable it for binary compatibility | 
						|
 | 
						|
//#ifdef TRUNCATE_BLOCK | 
						|
//  /* Try to guess if it is profitable to stop the current block here */ | 
						|
//  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { | 
						|
//    /* Compute an upper bound for the compressed length */ | 
						|
//    out_length = s.last_lit*8; | 
						|
//    in_length = s.strstart - s.block_start; | 
						|
// | 
						|
//    for (dcode = 0; dcode < D_CODES; dcode++) { | 
						|
//      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); | 
						|
//    } | 
						|
//    out_length >>>= 3; | 
						|
//    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | 
						|
//    //       s->last_lit, in_length, out_length, | 
						|
//    //       100L - out_length*100L/in_length)); | 
						|
//    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { | 
						|
//      return true; | 
						|
//    } | 
						|
//  } | 
						|
//#endif | 
						|
 | 
						|
  return (s.last_lit === s.lit_bufsize - 1); | 
						|
  /* We avoid equality with lit_bufsize because of wraparound at 64K | 
						|
   * on 16 bit machines and because stored blocks are restricted to | 
						|
   * 64K-1 bytes. | 
						|
   */ | 
						|
} | 
						|
 | 
						|
exports._tr_init  = _tr_init; | 
						|
exports._tr_stored_block = _tr_stored_block; | 
						|
exports._tr_flush_block  = _tr_flush_block; | 
						|
exports._tr_tally = _tr_tally; | 
						|
exports._tr_align = _tr_align; | 
						|
 | 
						|
},{"../utils/common":1}],8:[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin | 
						|
// | 
						|
// This software is provided 'as-is', without any express or implied | 
						|
// warranty. In no event will the authors be held liable for any damages | 
						|
// arising from the use of this software. | 
						|
// | 
						|
// Permission is granted to anyone to use this software for any purpose, | 
						|
// including commercial applications, and to alter it and redistribute it | 
						|
// freely, subject to the following restrictions: | 
						|
// | 
						|
// 1. The origin of this software must not be misrepresented; you must not | 
						|
//   claim that you wrote the original software. If you use this software | 
						|
//   in a product, an acknowledgment in the product documentation would be | 
						|
//   appreciated but is not required. | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be | 
						|
//   misrepresented as being the original software. | 
						|
// 3. This notice may not be removed or altered from any source distribution. | 
						|
 | 
						|
function ZStream() { | 
						|
  /* next input byte */ | 
						|
  this.input = null; // JS specific, because we have no pointers | 
						|
  this.next_in = 0; | 
						|
  /* number of bytes available at input */ | 
						|
  this.avail_in = 0; | 
						|
  /* total number of input bytes read so far */ | 
						|
  this.total_in = 0; | 
						|
  /* next output byte should be put there */ | 
						|
  this.output = null; // JS specific, because we have no pointers | 
						|
  this.next_out = 0; | 
						|
  /* remaining free space at output */ | 
						|
  this.avail_out = 0; | 
						|
  /* total number of bytes output so far */ | 
						|
  this.total_out = 0; | 
						|
  /* last error message, NULL if no error */ | 
						|
  this.msg = ''/*Z_NULL*/; | 
						|
  /* not visible by applications */ | 
						|
  this.state = null; | 
						|
  /* best guess about the data type: binary or text */ | 
						|
  this.data_type = 2/*Z_UNKNOWN*/; | 
						|
  /* adler32 value of the uncompressed data */ | 
						|
  this.adler = 0; | 
						|
} | 
						|
 | 
						|
module.exports = ZStream; | 
						|
 | 
						|
},{}],"/lib/deflate.js":[function(require,module,exports){ | 
						|
'use strict'; | 
						|
 | 
						|
 | 
						|
var zlib_deflate = require('./zlib/deflate'); | 
						|
var utils        = require('./utils/common'); | 
						|
var strings      = require('./utils/strings'); | 
						|
var msg          = require('./zlib/messages'); | 
						|
var ZStream      = require('./zlib/zstream'); | 
						|
 | 
						|
var toString = Object.prototype.toString; | 
						|
 | 
						|
/* Public constants ==========================================================*/ | 
						|
/* ===========================================================================*/ | 
						|
 | 
						|
var Z_NO_FLUSH      = 0; | 
						|
var Z_FINISH        = 4; | 
						|
 | 
						|
var Z_OK            = 0; | 
						|
var Z_STREAM_END    = 1; | 
						|
var Z_SYNC_FLUSH    = 2; | 
						|
 | 
						|
var Z_DEFAULT_COMPRESSION = -1; | 
						|
 | 
						|
var Z_DEFAULT_STRATEGY    = 0; | 
						|
 | 
						|
var Z_DEFLATED  = 8; | 
						|
 | 
						|
/* ===========================================================================*/ | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * class Deflate | 
						|
 * | 
						|
 * Generic JS-style wrapper for zlib calls. If you don't need | 
						|
 * streaming behaviour - use more simple functions: [[deflate]], | 
						|
 * [[deflateRaw]] and [[gzip]]. | 
						|
 **/ | 
						|
 | 
						|
/* internal | 
						|
 * Deflate.chunks -> Array | 
						|
 * | 
						|
 * Chunks of output data, if [[Deflate#onData]] not overridden. | 
						|
 **/ | 
						|
 | 
						|
/** | 
						|
 * Deflate.result -> Uint8Array|Array | 
						|
 * | 
						|
 * Compressed result, generated by default [[Deflate#onData]] | 
						|
 * and [[Deflate#onEnd]] handlers. Filled after you push last chunk | 
						|
 * (call [[Deflate#push]] with `Z_FINISH` / `true` param)  or if you | 
						|
 * push a chunk with explicit flush (call [[Deflate#push]] with | 
						|
 * `Z_SYNC_FLUSH` param). | 
						|
 **/ | 
						|
 | 
						|
/** | 
						|
 * Deflate.err -> Number | 
						|
 * | 
						|
 * Error code after deflate finished. 0 (Z_OK) on success. | 
						|
 * You will not need it in real life, because deflate errors | 
						|
 * are possible only on wrong options or bad `onData` / `onEnd` | 
						|
 * custom handlers. | 
						|
 **/ | 
						|
 | 
						|
/** | 
						|
 * Deflate.msg -> String | 
						|
 * | 
						|
 * Error message, if [[Deflate.err]] != 0 | 
						|
 **/ | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * new Deflate(options) | 
						|
 * - options (Object): zlib deflate options. | 
						|
 * | 
						|
 * Creates new deflator instance with specified params. Throws exception | 
						|
 * on bad params. Supported options: | 
						|
 * | 
						|
 * - `level` | 
						|
 * - `windowBits` | 
						|
 * - `memLevel` | 
						|
 * - `strategy` | 
						|
 * - `dictionary` | 
						|
 * | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) | 
						|
 * for more information on these. | 
						|
 * | 
						|
 * Additional options, for internal needs: | 
						|
 * | 
						|
 * - `chunkSize` - size of generated data chunks (16K by default) | 
						|
 * - `raw` (Boolean) - do raw deflate | 
						|
 * - `gzip` (Boolean) - create gzip wrapper | 
						|
 * - `to` (String) - if equal to 'string', then result will be "binary string" | 
						|
 *    (each char code [0..255]) | 
						|
 * - `header` (Object) - custom header for gzip | 
						|
 *   - `text` (Boolean) - true if compressed data believed to be text | 
						|
 *   - `time` (Number) - modification time, unix timestamp | 
						|
 *   - `os` (Number) - operation system code | 
						|
 *   - `extra` (Array) - array of bytes with extra data (max 65536) | 
						|
 *   - `name` (String) - file name (binary string) | 
						|
 *   - `comment` (String) - comment (binary string) | 
						|
 *   - `hcrc` (Boolean) - true if header crc should be added | 
						|
 * | 
						|
 * ##### Example: | 
						|
 * | 
						|
 * ```javascript | 
						|
 * var pako = require('pako') | 
						|
 *   , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) | 
						|
 *   , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); | 
						|
 * | 
						|
 * var deflate = new pako.Deflate({ level: 3}); | 
						|
 * | 
						|
 * deflate.push(chunk1, false); | 
						|
 * deflate.push(chunk2, true);  // true -> last chunk | 
						|
 * | 
						|
 * if (deflate.err) { throw new Error(deflate.err); } | 
						|
 * | 
						|
 * console.log(deflate.result); | 
						|
 * ``` | 
						|
 **/ | 
						|
function Deflate(options) { | 
						|
  if (!(this instanceof Deflate)) return new Deflate(options); | 
						|
 | 
						|
  this.options = utils.assign({ | 
						|
    level: Z_DEFAULT_COMPRESSION, | 
						|
    method: Z_DEFLATED, | 
						|
    chunkSize: 16384, | 
						|
    windowBits: 15, | 
						|
    memLevel: 8, | 
						|
    strategy: Z_DEFAULT_STRATEGY, | 
						|
    to: '' | 
						|
  }, options || {}); | 
						|
 | 
						|
  var opt = this.options; | 
						|
 | 
						|
  if (opt.raw && (opt.windowBits > 0)) { | 
						|
    opt.windowBits = -opt.windowBits; | 
						|
  } | 
						|
 | 
						|
  else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) { | 
						|
    opt.windowBits += 16; | 
						|
  } | 
						|
 | 
						|
  this.err    = 0;      // error code, if happens (0 = Z_OK) | 
						|
  this.msg    = '';     // error message | 
						|
  this.ended  = false;  // used to avoid multiple onEnd() calls | 
						|
  this.chunks = [];     // chunks of compressed data | 
						|
 | 
						|
  this.strm = new ZStream(); | 
						|
  this.strm.avail_out = 0; | 
						|
 | 
						|
  var status = zlib_deflate.deflateInit2( | 
						|
    this.strm, | 
						|
    opt.level, | 
						|
    opt.method, | 
						|
    opt.windowBits, | 
						|
    opt.memLevel, | 
						|
    opt.strategy | 
						|
  ); | 
						|
 | 
						|
  if (status !== Z_OK) { | 
						|
    throw new Error(msg[status]); | 
						|
  } | 
						|
 | 
						|
  if (opt.header) { | 
						|
    zlib_deflate.deflateSetHeader(this.strm, opt.header); | 
						|
  } | 
						|
 | 
						|
  if (opt.dictionary) { | 
						|
    var dict; | 
						|
    // Convert data if needed | 
						|
    if (typeof opt.dictionary === 'string') { | 
						|
      // If we need to compress text, change encoding to utf8. | 
						|
      dict = strings.string2buf(opt.dictionary); | 
						|
    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') { | 
						|
      dict = new Uint8Array(opt.dictionary); | 
						|
    } else { | 
						|
      dict = opt.dictionary; | 
						|
    } | 
						|
 | 
						|
    status = zlib_deflate.deflateSetDictionary(this.strm, dict); | 
						|
 | 
						|
    if (status !== Z_OK) { | 
						|
      throw new Error(msg[status]); | 
						|
    } | 
						|
 | 
						|
    this._dict_set = true; | 
						|
  } | 
						|
} | 
						|
 | 
						|
/** | 
						|
 * Deflate#push(data[, mode]) -> Boolean | 
						|
 * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be | 
						|
 *   converted to utf8 byte sequence. | 
						|
 * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. | 
						|
 *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH. | 
						|
 * | 
						|
 * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with | 
						|
 * new compressed chunks. Returns `true` on success. The last data block must have | 
						|
 * mode Z_FINISH (or `true`). That will flush internal pending buffers and call | 
						|
 * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you | 
						|
 * can use mode Z_SYNC_FLUSH, keeping the compression context. | 
						|
 * | 
						|
 * On fail call [[Deflate#onEnd]] with error code and return false. | 
						|
 * | 
						|
 * We strongly recommend to use `Uint8Array` on input for best speed (output | 
						|
 * array format is detected automatically). Also, don't skip last param and always | 
						|
 * use the same type in your code (boolean or number). That will improve JS speed. | 
						|
 * | 
						|
 * For regular `Array`-s make sure all elements are [0..255]. | 
						|
 * | 
						|
 * ##### Example | 
						|
 * | 
						|
 * ```javascript | 
						|
 * push(chunk, false); // push one of data chunks | 
						|
 * ... | 
						|
 * push(chunk, true);  // push last chunk | 
						|
 * ``` | 
						|
 **/ | 
						|
Deflate.prototype.push = function (data, mode) { | 
						|
  var strm = this.strm; | 
						|
  var chunkSize = this.options.chunkSize; | 
						|
  var status, _mode; | 
						|
 | 
						|
  if (this.ended) { return false; } | 
						|
 | 
						|
  _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH); | 
						|
 | 
						|
  // Convert data if needed | 
						|
  if (typeof data === 'string') { | 
						|
    // If we need to compress text, change encoding to utf8. | 
						|
    strm.input = strings.string2buf(data); | 
						|
  } else if (toString.call(data) === '[object ArrayBuffer]') { | 
						|
    strm.input = new Uint8Array(data); | 
						|
  } else { | 
						|
    strm.input = data; | 
						|
  } | 
						|
 | 
						|
  strm.next_in = 0; | 
						|
  strm.avail_in = strm.input.length; | 
						|
 | 
						|
  do { | 
						|
    if (strm.avail_out === 0) { | 
						|
      strm.output = new utils.Buf8(chunkSize); | 
						|
      strm.next_out = 0; | 
						|
      strm.avail_out = chunkSize; | 
						|
    } | 
						|
    status = zlib_deflate.deflate(strm, _mode);    /* no bad return value */ | 
						|
 | 
						|
    if (status !== Z_STREAM_END && status !== Z_OK) { | 
						|
      this.onEnd(status); | 
						|
      this.ended = true; | 
						|
      return false; | 
						|
    } | 
						|
    if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) { | 
						|
      if (this.options.to === 'string') { | 
						|
        this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out))); | 
						|
      } else { | 
						|
        this.onData(utils.shrinkBuf(strm.output, strm.next_out)); | 
						|
      } | 
						|
    } | 
						|
  } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END); | 
						|
 | 
						|
  // Finalize on the last chunk. | 
						|
  if (_mode === Z_FINISH) { | 
						|
    status = zlib_deflate.deflateEnd(this.strm); | 
						|
    this.onEnd(status); | 
						|
    this.ended = true; | 
						|
    return status === Z_OK; | 
						|
  } | 
						|
 | 
						|
  // callback interim results if Z_SYNC_FLUSH. | 
						|
  if (_mode === Z_SYNC_FLUSH) { | 
						|
    this.onEnd(Z_OK); | 
						|
    strm.avail_out = 0; | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  return true; | 
						|
}; | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * Deflate#onData(chunk) -> Void | 
						|
 * - chunk (Uint8Array|Array|String): output data. Type of array depends | 
						|
 *   on js engine support. When string output requested, each chunk | 
						|
 *   will be string. | 
						|
 * | 
						|
 * By default, stores data blocks in `chunks[]` property and glue | 
						|
 * those in `onEnd`. Override this handler, if you need another behaviour. | 
						|
 **/ | 
						|
Deflate.prototype.onData = function (chunk) { | 
						|
  this.chunks.push(chunk); | 
						|
}; | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * Deflate#onEnd(status) -> Void | 
						|
 * - status (Number): deflate status. 0 (Z_OK) on success, | 
						|
 *   other if not. | 
						|
 * | 
						|
 * Called once after you tell deflate that the input stream is | 
						|
 * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) | 
						|
 * or if an error happened. By default - join collected chunks, | 
						|
 * free memory and fill `results` / `err` properties. | 
						|
 **/ | 
						|
Deflate.prototype.onEnd = function (status) { | 
						|
  // On success - join | 
						|
  if (status === Z_OK) { | 
						|
    if (this.options.to === 'string') { | 
						|
      this.result = this.chunks.join(''); | 
						|
    } else { | 
						|
      this.result = utils.flattenChunks(this.chunks); | 
						|
    } | 
						|
  } | 
						|
  this.chunks = []; | 
						|
  this.err = status; | 
						|
  this.msg = this.strm.msg; | 
						|
}; | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * deflate(data[, options]) -> Uint8Array|Array|String | 
						|
 * - data (Uint8Array|Array|String): input data to compress. | 
						|
 * - options (Object): zlib deflate options. | 
						|
 * | 
						|
 * Compress `data` with deflate algorithm and `options`. | 
						|
 * | 
						|
 * Supported options are: | 
						|
 * | 
						|
 * - level | 
						|
 * - windowBits | 
						|
 * - memLevel | 
						|
 * - strategy | 
						|
 * - dictionary | 
						|
 * | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) | 
						|
 * for more information on these. | 
						|
 * | 
						|
 * Sugar (options): | 
						|
 * | 
						|
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify | 
						|
 *   negative windowBits implicitly. | 
						|
 * - `to` (String) - if equal to 'string', then result will be "binary string" | 
						|
 *    (each char code [0..255]) | 
						|
 * | 
						|
 * ##### Example: | 
						|
 * | 
						|
 * ```javascript | 
						|
 * var pako = require('pako') | 
						|
 *   , data = Uint8Array([1,2,3,4,5,6,7,8,9]); | 
						|
 * | 
						|
 * console.log(pako.deflate(data)); | 
						|
 * ``` | 
						|
 **/ | 
						|
function deflate(input, options) { | 
						|
  var deflator = new Deflate(options); | 
						|
 | 
						|
  deflator.push(input, true); | 
						|
 | 
						|
  // That will never happens, if you don't cheat with options :) | 
						|
  if (deflator.err) { throw deflator.msg || msg[deflator.err]; } | 
						|
 | 
						|
  return deflator.result; | 
						|
} | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * deflateRaw(data[, options]) -> Uint8Array|Array|String | 
						|
 * - data (Uint8Array|Array|String): input data to compress. | 
						|
 * - options (Object): zlib deflate options. | 
						|
 * | 
						|
 * The same as [[deflate]], but creates raw data, without wrapper | 
						|
 * (header and adler32 crc). | 
						|
 **/ | 
						|
function deflateRaw(input, options) { | 
						|
  options = options || {}; | 
						|
  options.raw = true; | 
						|
  return deflate(input, options); | 
						|
} | 
						|
 | 
						|
 | 
						|
/** | 
						|
 * gzip(data[, options]) -> Uint8Array|Array|String | 
						|
 * - data (Uint8Array|Array|String): input data to compress. | 
						|
 * - options (Object): zlib deflate options. | 
						|
 * | 
						|
 * The same as [[deflate]], but create gzip wrapper instead of | 
						|
 * deflate one. | 
						|
 **/ | 
						|
function gzip(input, options) { | 
						|
  options = options || {}; | 
						|
  options.gzip = true; | 
						|
  return deflate(input, options); | 
						|
} | 
						|
 | 
						|
 | 
						|
exports.Deflate = Deflate; | 
						|
exports.deflate = deflate; | 
						|
exports.deflateRaw = deflateRaw; | 
						|
exports.gzip = gzip; | 
						|
 | 
						|
},{"./utils/common":1,"./utils/strings":2,"./zlib/deflate":5,"./zlib/messages":6,"./zlib/zstream":8}]},{},[])("/lib/deflate.js") | 
						|
});
 | 
						|
 |