You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							999 lines
						
					
					
						
							28 KiB
						
					
					
				
			
		
		
	
	
							999 lines
						
					
					
						
							28 KiB
						
					
					
				/** | 
						|
 * Supported cipher modes. | 
						|
 * | 
						|
 * @author Dave Longley | 
						|
 * | 
						|
 * Copyright (c) 2010-2014 Digital Bazaar, Inc. | 
						|
 */ | 
						|
var forge = require('./forge'); | 
						|
require('./util'); | 
						|
 | 
						|
forge.cipher = forge.cipher || {}; | 
						|
 | 
						|
// supported cipher modes | 
						|
var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {}; | 
						|
 | 
						|
/** Electronic codebook (ECB) (Don't use this; it's not secure) **/ | 
						|
 | 
						|
modes.ecb = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'ECB'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = new Array(this._ints); | 
						|
  this._outBlock = new Array(this._ints); | 
						|
}; | 
						|
 | 
						|
modes.ecb.prototype.start = function(options) {}; | 
						|
 | 
						|
modes.ecb.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // get next block | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._inBlock[i] = input.getInt32(); | 
						|
  } | 
						|
 | 
						|
  // encrypt block | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // write output | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    output.putInt32(this._outBlock[i]); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.ecb.prototype.decrypt = function(input, output, finish) { | 
						|
  // not enough input to decrypt | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // get next block | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._inBlock[i] = input.getInt32(); | 
						|
  } | 
						|
 | 
						|
  // decrypt block | 
						|
  this.cipher.decrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // write output | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    output.putInt32(this._outBlock[i]); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.ecb.prototype.pad = function(input, options) { | 
						|
  // add PKCS#7 padding to block (each pad byte is the | 
						|
  // value of the number of pad bytes) | 
						|
  var padding = (input.length() === this.blockSize ? | 
						|
    this.blockSize : (this.blockSize - input.length())); | 
						|
  input.fillWithByte(padding, padding); | 
						|
  return true; | 
						|
}; | 
						|
 | 
						|
modes.ecb.prototype.unpad = function(output, options) { | 
						|
  // check for error: input data not a multiple of blockSize | 
						|
  if(options.overflow > 0) { | 
						|
    return false; | 
						|
  } | 
						|
 | 
						|
  // ensure padding byte count is valid | 
						|
  var len = output.length(); | 
						|
  var count = output.at(len - 1); | 
						|
  if(count > (this.blockSize << 2)) { | 
						|
    return false; | 
						|
  } | 
						|
 | 
						|
  // trim off padding bytes | 
						|
  output.truncate(count); | 
						|
  return true; | 
						|
}; | 
						|
 | 
						|
/** Cipher-block Chaining (CBC) **/ | 
						|
 | 
						|
modes.cbc = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'CBC'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = new Array(this._ints); | 
						|
  this._outBlock = new Array(this._ints); | 
						|
}; | 
						|
 | 
						|
modes.cbc.prototype.start = function(options) { | 
						|
  // Note: legacy support for using IV residue (has security flaws) | 
						|
  // if IV is null, reuse block from previous processing | 
						|
  if(options.iv === null) { | 
						|
    // must have a previous block | 
						|
    if(!this._prev) { | 
						|
      throw new Error('Invalid IV parameter.'); | 
						|
    } | 
						|
    this._iv = this._prev.slice(0); | 
						|
  } else if(!('iv' in options)) { | 
						|
    throw new Error('Invalid IV parameter.'); | 
						|
  } else { | 
						|
    // save IV as "previous" block | 
						|
    this._iv = transformIV(options.iv, this.blockSize); | 
						|
    this._prev = this._iv.slice(0); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.cbc.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // get next block | 
						|
  // CBC XOR's IV (or previous block) with plaintext | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._inBlock[i] = this._prev[i] ^ input.getInt32(); | 
						|
  } | 
						|
 | 
						|
  // encrypt block | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // write output, save previous block | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    output.putInt32(this._outBlock[i]); | 
						|
  } | 
						|
  this._prev = this._outBlock; | 
						|
}; | 
						|
 | 
						|
modes.cbc.prototype.decrypt = function(input, output, finish) { | 
						|
  // not enough input to decrypt | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // get next block | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._inBlock[i] = input.getInt32(); | 
						|
  } | 
						|
 | 
						|
  // decrypt block | 
						|
  this.cipher.decrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // write output, save previous ciphered block | 
						|
  // CBC XOR's IV (or previous block) with ciphertext | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    output.putInt32(this._prev[i] ^ this._outBlock[i]); | 
						|
  } | 
						|
  this._prev = this._inBlock.slice(0); | 
						|
}; | 
						|
 | 
						|
modes.cbc.prototype.pad = function(input, options) { | 
						|
  // add PKCS#7 padding to block (each pad byte is the | 
						|
  // value of the number of pad bytes) | 
						|
  var padding = (input.length() === this.blockSize ? | 
						|
    this.blockSize : (this.blockSize - input.length())); | 
						|
  input.fillWithByte(padding, padding); | 
						|
  return true; | 
						|
}; | 
						|
 | 
						|
modes.cbc.prototype.unpad = function(output, options) { | 
						|
  // check for error: input data not a multiple of blockSize | 
						|
  if(options.overflow > 0) { | 
						|
    return false; | 
						|
  } | 
						|
 | 
						|
  // ensure padding byte count is valid | 
						|
  var len = output.length(); | 
						|
  var count = output.at(len - 1); | 
						|
  if(count > (this.blockSize << 2)) { | 
						|
    return false; | 
						|
  } | 
						|
 | 
						|
  // trim off padding bytes | 
						|
  output.truncate(count); | 
						|
  return true; | 
						|
}; | 
						|
 | 
						|
/** Cipher feedback (CFB) **/ | 
						|
 | 
						|
modes.cfb = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'CFB'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = null; | 
						|
  this._outBlock = new Array(this._ints); | 
						|
  this._partialBlock = new Array(this._ints); | 
						|
  this._partialOutput = forge.util.createBuffer(); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.cfb.prototype.start = function(options) { | 
						|
  if(!('iv' in options)) { | 
						|
    throw new Error('Invalid IV parameter.'); | 
						|
  } | 
						|
  // use IV as first input | 
						|
  this._iv = transformIV(options.iv, this.blockSize); | 
						|
  this._inBlock = this._iv.slice(0); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.cfb.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(inputLength === 0) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // handle full block | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) { | 
						|
    // XOR input with output, write input as output | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._inBlock[i] = input.getInt32() ^ this._outBlock[i]; | 
						|
      output.putInt32(this._inBlock[i]); | 
						|
    } | 
						|
    return; | 
						|
  } | 
						|
 | 
						|
  // handle partial block | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize; | 
						|
  if(partialBytes > 0) { | 
						|
    partialBytes = this.blockSize - partialBytes; | 
						|
  } | 
						|
 | 
						|
  // XOR input with output, write input as partial output | 
						|
  this._partialOutput.clear(); | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._partialBlock[i] = input.getInt32() ^ this._outBlock[i]; | 
						|
    this._partialOutput.putInt32(this._partialBlock[i]); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0) { | 
						|
    // block still incomplete, restore input buffer | 
						|
    input.read -= this.blockSize; | 
						|
  } else { | 
						|
    // block complete, update input block | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._inBlock[i] = this._partialBlock[i]; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  // skip any previous partial bytes | 
						|
  if(this._partialBytes > 0) { | 
						|
    this._partialOutput.getBytes(this._partialBytes); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) { | 
						|
    output.putBytes(this._partialOutput.getBytes( | 
						|
      partialBytes - this._partialBytes)); | 
						|
    this._partialBytes = partialBytes; | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes( | 
						|
    inputLength - this._partialBytes)); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.cfb.prototype.decrypt = function(input, output, finish) { | 
						|
  // not enough input to decrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(inputLength === 0) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block (CFB always uses encryption mode) | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // handle full block | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) { | 
						|
    // XOR input with output, write input as output | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._inBlock[i] = input.getInt32(); | 
						|
      output.putInt32(this._inBlock[i] ^ this._outBlock[i]); | 
						|
    } | 
						|
    return; | 
						|
  } | 
						|
 | 
						|
  // handle partial block | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize; | 
						|
  if(partialBytes > 0) { | 
						|
    partialBytes = this.blockSize - partialBytes; | 
						|
  } | 
						|
 | 
						|
  // XOR input with output, write input as partial output | 
						|
  this._partialOutput.clear(); | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._partialBlock[i] = input.getInt32(); | 
						|
    this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0) { | 
						|
    // block still incomplete, restore input buffer | 
						|
    input.read -= this.blockSize; | 
						|
  } else { | 
						|
    // block complete, update input block | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._inBlock[i] = this._partialBlock[i]; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  // skip any previous partial bytes | 
						|
  if(this._partialBytes > 0) { | 
						|
    this._partialOutput.getBytes(this._partialBytes); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) { | 
						|
    output.putBytes(this._partialOutput.getBytes( | 
						|
      partialBytes - this._partialBytes)); | 
						|
    this._partialBytes = partialBytes; | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes( | 
						|
    inputLength - this._partialBytes)); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
/** Output feedback (OFB) **/ | 
						|
 | 
						|
modes.ofb = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'OFB'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = null; | 
						|
  this._outBlock = new Array(this._ints); | 
						|
  this._partialOutput = forge.util.createBuffer(); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.ofb.prototype.start = function(options) { | 
						|
  if(!('iv' in options)) { | 
						|
    throw new Error('Invalid IV parameter.'); | 
						|
  } | 
						|
  // use IV as first input | 
						|
  this._iv = transformIV(options.iv, this.blockSize); | 
						|
  this._inBlock = this._iv.slice(0); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.ofb.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(input.length() === 0) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block (OFB always uses encryption mode) | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // handle full block | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) { | 
						|
    // XOR input with output and update next input | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      output.putInt32(input.getInt32() ^ this._outBlock[i]); | 
						|
      this._inBlock[i] = this._outBlock[i]; | 
						|
    } | 
						|
    return; | 
						|
  } | 
						|
 | 
						|
  // handle partial block | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize; | 
						|
  if(partialBytes > 0) { | 
						|
    partialBytes = this.blockSize - partialBytes; | 
						|
  } | 
						|
 | 
						|
  // XOR input with output | 
						|
  this._partialOutput.clear(); | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0) { | 
						|
    // block still incomplete, restore input buffer | 
						|
    input.read -= this.blockSize; | 
						|
  } else { | 
						|
    // block complete, update input block | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._inBlock[i] = this._outBlock[i]; | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  // skip any previous partial bytes | 
						|
  if(this._partialBytes > 0) { | 
						|
    this._partialOutput.getBytes(this._partialBytes); | 
						|
  } | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) { | 
						|
    output.putBytes(this._partialOutput.getBytes( | 
						|
      partialBytes - this._partialBytes)); | 
						|
    this._partialBytes = partialBytes; | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes( | 
						|
    inputLength - this._partialBytes)); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt; | 
						|
 | 
						|
/** Counter (CTR) **/ | 
						|
 | 
						|
modes.ctr = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'CTR'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = null; | 
						|
  this._outBlock = new Array(this._ints); | 
						|
  this._partialOutput = forge.util.createBuffer(); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.ctr.prototype.start = function(options) { | 
						|
  if(!('iv' in options)) { | 
						|
    throw new Error('Invalid IV parameter.'); | 
						|
  } | 
						|
  // use IV as first input | 
						|
  this._iv = transformIV(options.iv, this.blockSize); | 
						|
  this._inBlock = this._iv.slice(0); | 
						|
  this._partialBytes = 0; | 
						|
}; | 
						|
 | 
						|
modes.ctr.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(inputLength === 0) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block (CTR always uses encryption mode) | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // handle full block | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) { | 
						|
    // XOR input with output | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      output.putInt32(input.getInt32() ^ this._outBlock[i]); | 
						|
    } | 
						|
  } else { | 
						|
    // handle partial block | 
						|
    var partialBytes = (this.blockSize - inputLength) % this.blockSize; | 
						|
    if(partialBytes > 0) { | 
						|
      partialBytes = this.blockSize - partialBytes; | 
						|
    } | 
						|
 | 
						|
    // XOR input with output | 
						|
    this._partialOutput.clear(); | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | 
						|
    } | 
						|
 | 
						|
    if(partialBytes > 0) { | 
						|
      // block still incomplete, restore input buffer | 
						|
      input.read -= this.blockSize; | 
						|
    } | 
						|
 | 
						|
    // skip any previous partial bytes | 
						|
    if(this._partialBytes > 0) { | 
						|
      this._partialOutput.getBytes(this._partialBytes); | 
						|
    } | 
						|
 | 
						|
    if(partialBytes > 0 && !finish) { | 
						|
      output.putBytes(this._partialOutput.getBytes( | 
						|
        partialBytes - this._partialBytes)); | 
						|
      this._partialBytes = partialBytes; | 
						|
      return true; | 
						|
    } | 
						|
 | 
						|
    output.putBytes(this._partialOutput.getBytes( | 
						|
      inputLength - this._partialBytes)); | 
						|
    this._partialBytes = 0; | 
						|
  } | 
						|
 | 
						|
  // block complete, increment counter (input block) | 
						|
  inc32(this._inBlock); | 
						|
}; | 
						|
 | 
						|
modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt; | 
						|
 | 
						|
/** Galois/Counter Mode (GCM) **/ | 
						|
 | 
						|
modes.gcm = function(options) { | 
						|
  options = options || {}; | 
						|
  this.name = 'GCM'; | 
						|
  this.cipher = options.cipher; | 
						|
  this.blockSize = options.blockSize || 16; | 
						|
  this._ints = this.blockSize / 4; | 
						|
  this._inBlock = new Array(this._ints); | 
						|
  this._outBlock = new Array(this._ints); | 
						|
  this._partialOutput = forge.util.createBuffer(); | 
						|
  this._partialBytes = 0; | 
						|
 | 
						|
  // R is actually this value concatenated with 120 more zero bits, but | 
						|
  // we only XOR against R so the other zeros have no effect -- we just | 
						|
  // apply this value to the first integer in a block | 
						|
  this._R = 0xE1000000; | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.start = function(options) { | 
						|
  if(!('iv' in options)) { | 
						|
    throw new Error('Invalid IV parameter.'); | 
						|
  } | 
						|
  // ensure IV is a byte buffer | 
						|
  var iv = forge.util.createBuffer(options.iv); | 
						|
 | 
						|
  // no ciphered data processed yet | 
						|
  this._cipherLength = 0; | 
						|
 | 
						|
  // default additional data is none | 
						|
  var additionalData; | 
						|
  if('additionalData' in options) { | 
						|
    additionalData = forge.util.createBuffer(options.additionalData); | 
						|
  } else { | 
						|
    additionalData = forge.util.createBuffer(); | 
						|
  } | 
						|
 | 
						|
  // default tag length is 128 bits | 
						|
  if('tagLength' in options) { | 
						|
    this._tagLength = options.tagLength; | 
						|
  } else { | 
						|
    this._tagLength = 128; | 
						|
  } | 
						|
 | 
						|
  // if tag is given, ensure tag matches tag length | 
						|
  this._tag = null; | 
						|
  if(options.decrypt) { | 
						|
    // save tag to check later | 
						|
    this._tag = forge.util.createBuffer(options.tag).getBytes(); | 
						|
    if(this._tag.length !== (this._tagLength / 8)) { | 
						|
      throw new Error('Authentication tag does not match tag length.'); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  // create tmp storage for hash calculation | 
						|
  this._hashBlock = new Array(this._ints); | 
						|
 | 
						|
  // no tag generated yet | 
						|
  this.tag = null; | 
						|
 | 
						|
  // generate hash subkey | 
						|
  // (apply block cipher to "zero" block) | 
						|
  this._hashSubkey = new Array(this._ints); | 
						|
  this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey); | 
						|
 | 
						|
  // generate table M | 
						|
  // use 4-bit tables (32 component decomposition of a 16 byte value) | 
						|
  // 8-bit tables take more space and are known to have security | 
						|
  // vulnerabilities (in native implementations) | 
						|
  this.componentBits = 4; | 
						|
  this._m = this.generateHashTable(this._hashSubkey, this.componentBits); | 
						|
 | 
						|
  // Note: support IV length different from 96 bits? (only supporting | 
						|
  // 96 bits is recommended by NIST SP-800-38D) | 
						|
  // generate J_0 | 
						|
  var ivLength = iv.length(); | 
						|
  if(ivLength === 12) { | 
						|
    // 96-bit IV | 
						|
    this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1]; | 
						|
  } else { | 
						|
    // IV is NOT 96-bits | 
						|
    this._j0 = [0, 0, 0, 0]; | 
						|
    while(iv.length() > 0) { | 
						|
      this._j0 = this.ghash( | 
						|
        this._hashSubkey, this._j0, | 
						|
        [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]); | 
						|
    } | 
						|
    this._j0 = this.ghash( | 
						|
      this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8))); | 
						|
  } | 
						|
 | 
						|
  // generate ICB (initial counter block) | 
						|
  this._inBlock = this._j0.slice(0); | 
						|
  inc32(this._inBlock); | 
						|
  this._partialBytes = 0; | 
						|
 | 
						|
  // consume authentication data | 
						|
  additionalData = forge.util.createBuffer(additionalData); | 
						|
  // save additional data length as a BE 64-bit number | 
						|
  this._aDataLength = from64To32(additionalData.length() * 8); | 
						|
  // pad additional data to 128 bit (16 byte) block size | 
						|
  var overflow = additionalData.length() % this.blockSize; | 
						|
  if(overflow) { | 
						|
    additionalData.fillWithByte(0, this.blockSize - overflow); | 
						|
  } | 
						|
  this._s = [0, 0, 0, 0]; | 
						|
  while(additionalData.length() > 0) { | 
						|
    this._s = this.ghash(this._hashSubkey, this._s, [ | 
						|
      additionalData.getInt32(), | 
						|
      additionalData.getInt32(), | 
						|
      additionalData.getInt32(), | 
						|
      additionalData.getInt32() | 
						|
    ]); | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.encrypt = function(input, output, finish) { | 
						|
  // not enough input to encrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(inputLength === 0) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // handle full block | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) { | 
						|
    // XOR input with output | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      output.putInt32(this._outBlock[i] ^= input.getInt32()); | 
						|
    } | 
						|
    this._cipherLength += this.blockSize; | 
						|
  } else { | 
						|
    // handle partial block | 
						|
    var partialBytes = (this.blockSize - inputLength) % this.blockSize; | 
						|
    if(partialBytes > 0) { | 
						|
      partialBytes = this.blockSize - partialBytes; | 
						|
    } | 
						|
 | 
						|
    // XOR input with output | 
						|
    this._partialOutput.clear(); | 
						|
    for(var i = 0; i < this._ints; ++i) { | 
						|
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); | 
						|
    } | 
						|
 | 
						|
    if(partialBytes <= 0 || finish) { | 
						|
      // handle overflow prior to hashing | 
						|
      if(finish) { | 
						|
        // get block overflow | 
						|
        var overflow = inputLength % this.blockSize; | 
						|
        this._cipherLength += overflow; | 
						|
        // truncate for hash function | 
						|
        this._partialOutput.truncate(this.blockSize - overflow); | 
						|
      } else { | 
						|
        this._cipherLength += this.blockSize; | 
						|
      } | 
						|
 | 
						|
      // get output block for hashing | 
						|
      for(var i = 0; i < this._ints; ++i) { | 
						|
        this._outBlock[i] = this._partialOutput.getInt32(); | 
						|
      } | 
						|
      this._partialOutput.read -= this.blockSize; | 
						|
    } | 
						|
 | 
						|
    // skip any previous partial bytes | 
						|
    if(this._partialBytes > 0) { | 
						|
      this._partialOutput.getBytes(this._partialBytes); | 
						|
    } | 
						|
 | 
						|
    if(partialBytes > 0 && !finish) { | 
						|
      // block still incomplete, restore input buffer, get partial output, | 
						|
      // and return early | 
						|
      input.read -= this.blockSize; | 
						|
      output.putBytes(this._partialOutput.getBytes( | 
						|
        partialBytes - this._partialBytes)); | 
						|
      this._partialBytes = partialBytes; | 
						|
      return true; | 
						|
    } | 
						|
 | 
						|
    output.putBytes(this._partialOutput.getBytes( | 
						|
      inputLength - this._partialBytes)); | 
						|
    this._partialBytes = 0; | 
						|
  } | 
						|
 | 
						|
  // update hash block S | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, this._outBlock); | 
						|
 | 
						|
  // increment counter (input block) | 
						|
  inc32(this._inBlock); | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.decrypt = function(input, output, finish) { | 
						|
  // not enough input to decrypt | 
						|
  var inputLength = input.length(); | 
						|
  if(inputLength < this.blockSize && !(finish && inputLength > 0)) { | 
						|
    return true; | 
						|
  } | 
						|
 | 
						|
  // encrypt block (GCM always uses encryption mode) | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock); | 
						|
 | 
						|
  // increment counter (input block) | 
						|
  inc32(this._inBlock); | 
						|
 | 
						|
  // update hash block S | 
						|
  this._hashBlock[0] = input.getInt32(); | 
						|
  this._hashBlock[1] = input.getInt32(); | 
						|
  this._hashBlock[2] = input.getInt32(); | 
						|
  this._hashBlock[3] = input.getInt32(); | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock); | 
						|
 | 
						|
  // XOR hash input with output | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    output.putInt32(this._outBlock[i] ^ this._hashBlock[i]); | 
						|
  } | 
						|
 | 
						|
  // increment cipher data length | 
						|
  if(inputLength < this.blockSize) { | 
						|
    this._cipherLength += inputLength % this.blockSize; | 
						|
  } else { | 
						|
    this._cipherLength += this.blockSize; | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.afterFinish = function(output, options) { | 
						|
  var rval = true; | 
						|
 | 
						|
  // handle overflow | 
						|
  if(options.decrypt && options.overflow) { | 
						|
    output.truncate(this.blockSize - options.overflow); | 
						|
  } | 
						|
 | 
						|
  // handle authentication tag | 
						|
  this.tag = forge.util.createBuffer(); | 
						|
 | 
						|
  // concatenate additional data length with cipher length | 
						|
  var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8)); | 
						|
 | 
						|
  // include lengths in hash | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, lengths); | 
						|
 | 
						|
  // do GCTR(J_0, S) | 
						|
  var tag = []; | 
						|
  this.cipher.encrypt(this._j0, tag); | 
						|
  for(var i = 0; i < this._ints; ++i) { | 
						|
    this.tag.putInt32(this._s[i] ^ tag[i]); | 
						|
  } | 
						|
 | 
						|
  // trim tag to length | 
						|
  this.tag.truncate(this.tag.length() % (this._tagLength / 8)); | 
						|
 | 
						|
  // check authentication tag | 
						|
  if(options.decrypt && this.tag.bytes() !== this._tag) { | 
						|
    rval = false; | 
						|
  } | 
						|
 | 
						|
  return rval; | 
						|
}; | 
						|
 | 
						|
/** | 
						|
 * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois | 
						|
 * field multiplication. The field, GF(2^128), is defined by the polynomial: | 
						|
 * | 
						|
 * x^128 + x^7 + x^2 + x + 1 | 
						|
 * | 
						|
 * Which is represented in little-endian binary form as: 11100001 (0xe1). When | 
						|
 * the value of a coefficient is 1, a bit is set. The value R, is the | 
						|
 * concatenation of this value and 120 zero bits, yielding a 128-bit value | 
						|
 * which matches the block size. | 
						|
 * | 
						|
 * This function will multiply two elements (vectors of bytes), X and Y, in | 
						|
 * the field GF(2^128). The result is initialized to zero. For each bit of | 
						|
 * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd) | 
						|
 * by the current value of Y. For each bit, the value of Y will be raised by | 
						|
 * a power of x (multiplied by the polynomial x). This can be achieved by | 
						|
 * shifting Y once to the right. If the current value of Y, prior to being | 
						|
 * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial. | 
						|
 * Otherwise, we must divide by R after shifting to find the remainder. | 
						|
 * | 
						|
 * @param x the first block to multiply by the second. | 
						|
 * @param y the second block to multiply by the first. | 
						|
 * | 
						|
 * @return the block result of the multiplication. | 
						|
 */ | 
						|
modes.gcm.prototype.multiply = function(x, y) { | 
						|
  var z_i = [0, 0, 0, 0]; | 
						|
  var v_i = y.slice(0); | 
						|
 | 
						|
  // calculate Z_128 (block has 128 bits) | 
						|
  for(var i = 0; i < 128; ++i) { | 
						|
    // if x_i is 0, Z_{i+1} = Z_i (unchanged) | 
						|
    // else Z_{i+1} = Z_i ^ V_i | 
						|
    // get x_i by finding 32-bit int position, then left shift 1 by remainder | 
						|
    var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32)); | 
						|
    if(x_i) { | 
						|
      z_i[0] ^= v_i[0]; | 
						|
      z_i[1] ^= v_i[1]; | 
						|
      z_i[2] ^= v_i[2]; | 
						|
      z_i[3] ^= v_i[3]; | 
						|
    } | 
						|
 | 
						|
    // if LSB(V_i) is 1, V_i = V_i >> 1 | 
						|
    // else V_i = (V_i >> 1) ^ R | 
						|
    this.pow(v_i, v_i); | 
						|
  } | 
						|
 | 
						|
  return z_i; | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.pow = function(x, out) { | 
						|
  // if LSB(x) is 1, x = x >>> 1 | 
						|
  // else x = (x >>> 1) ^ R | 
						|
  var lsb = x[3] & 1; | 
						|
 | 
						|
  // always do x >>> 1: | 
						|
  // starting with the rightmost integer, shift each integer to the right | 
						|
  // one bit, pulling in the bit from the integer to the left as its top | 
						|
  // most bit (do this for the last 3 integers) | 
						|
  for(var i = 3; i > 0; --i) { | 
						|
    out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31); | 
						|
  } | 
						|
  // shift the first integer normally | 
						|
  out[0] = x[0] >>> 1; | 
						|
 | 
						|
  // if lsb was not set, then polynomial had a degree of 127 and doesn't | 
						|
  // need to divided; otherwise, XOR with R to find the remainder; we only | 
						|
  // need to XOR the first integer since R technically ends w/120 zero bits | 
						|
  if(lsb) { | 
						|
    out[0] ^= this._R; | 
						|
  } | 
						|
}; | 
						|
 | 
						|
modes.gcm.prototype.tableMultiply = function(x) { | 
						|
  // assumes 4-bit tables are used | 
						|
  var z = [0, 0, 0, 0]; | 
						|
  for(var i = 0; i < 32; ++i) { | 
						|
    var idx = (i / 8) | 0; | 
						|
    var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF; | 
						|
    var ah = this._m[i][x_i]; | 
						|
    z[0] ^= ah[0]; | 
						|
    z[1] ^= ah[1]; | 
						|
    z[2] ^= ah[2]; | 
						|
    z[3] ^= ah[3]; | 
						|
  } | 
						|
  return z; | 
						|
}; | 
						|
 | 
						|
/** | 
						|
 * A continuing version of the GHASH algorithm that operates on a single | 
						|
 * block. The hash block, last hash value (Ym) and the new block to hash | 
						|
 * are given. | 
						|
 * | 
						|
 * @param h the hash block. | 
						|
 * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash. | 
						|
 * @param x the block to hash. | 
						|
 * | 
						|
 * @return the hashed value (Ym). | 
						|
 */ | 
						|
modes.gcm.prototype.ghash = function(h, y, x) { | 
						|
  y[0] ^= x[0]; | 
						|
  y[1] ^= x[1]; | 
						|
  y[2] ^= x[2]; | 
						|
  y[3] ^= x[3]; | 
						|
  return this.tableMultiply(y); | 
						|
  //return this.multiply(y, h); | 
						|
}; | 
						|
 | 
						|
/** | 
						|
 * Precomputes a table for multiplying against the hash subkey. This | 
						|
 * mechanism provides a substantial speed increase over multiplication | 
						|
 * performed without a table. The table-based multiplication this table is | 
						|
 * for solves X * H by multiplying each component of X by H and then | 
						|
 * composing the results together using XOR. | 
						|
 * | 
						|
 * This function can be used to generate tables with different bit sizes | 
						|
 * for the components, however, this implementation assumes there are | 
						|
 * 32 components of X (which is a 16 byte vector), therefore each component | 
						|
 * takes 4-bits (so the table is constructed with bits=4). | 
						|
 * | 
						|
 * @param h the hash subkey. | 
						|
 * @param bits the bit size for a component. | 
						|
 */ | 
						|
modes.gcm.prototype.generateHashTable = function(h, bits) { | 
						|
  // TODO: There are further optimizations that would use only the | 
						|
  // first table M_0 (or some variant) along with a remainder table; | 
						|
  // this can be explored in the future | 
						|
  var multiplier = 8 / bits; | 
						|
  var perInt = 4 * multiplier; | 
						|
  var size = 16 * multiplier; | 
						|
  var m = new Array(size); | 
						|
  for(var i = 0; i < size; ++i) { | 
						|
    var tmp = [0, 0, 0, 0]; | 
						|
    var idx = (i / perInt) | 0; | 
						|
    var shft = ((perInt - 1 - (i % perInt)) * bits); | 
						|
    tmp[idx] = (1 << (bits - 1)) << shft; | 
						|
    m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits); | 
						|
  } | 
						|
  return m; | 
						|
}; | 
						|
 | 
						|
/** | 
						|
 * Generates a table for multiplying against the hash subkey for one | 
						|
 * particular component (out of all possible component values). | 
						|
 * | 
						|
 * @param mid the pre-multiplied value for the middle key of the table. | 
						|
 * @param bits the bit size for a component. | 
						|
 */ | 
						|
modes.gcm.prototype.generateSubHashTable = function(mid, bits) { | 
						|
  // compute the table quickly by minimizing the number of | 
						|
  // POW operations -- they only need to be performed for powers of 2, | 
						|
  // all other entries can be composed from those powers using XOR | 
						|
  var size = 1 << bits; | 
						|
  var half = size >>> 1; | 
						|
  var m = new Array(size); | 
						|
  m[half] = mid.slice(0); | 
						|
  var i = half >>> 1; | 
						|
  while(i > 0) { | 
						|
    // raise m0[2 * i] and store in m0[i] | 
						|
    this.pow(m[2 * i], m[i] = []); | 
						|
    i >>= 1; | 
						|
  } | 
						|
  i = 2; | 
						|
  while(i < half) { | 
						|
    for(var j = 1; j < i; ++j) { | 
						|
      var m_i = m[i]; | 
						|
      var m_j = m[j]; | 
						|
      m[i + j] = [ | 
						|
        m_i[0] ^ m_j[0], | 
						|
        m_i[1] ^ m_j[1], | 
						|
        m_i[2] ^ m_j[2], | 
						|
        m_i[3] ^ m_j[3] | 
						|
      ]; | 
						|
    } | 
						|
    i *= 2; | 
						|
  } | 
						|
  m[0] = [0, 0, 0, 0]; | 
						|
  /* Note: We could avoid storing these by doing composition during multiply | 
						|
  calculate top half using composition by speed is preferred. */ | 
						|
  for(i = half + 1; i < size; ++i) { | 
						|
    var c = m[i ^ half]; | 
						|
    m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]]; | 
						|
  } | 
						|
  return m; | 
						|
}; | 
						|
 | 
						|
/** Utility functions */ | 
						|
 | 
						|
function transformIV(iv, blockSize) { | 
						|
  if(typeof iv === 'string') { | 
						|
    // convert iv string into byte buffer | 
						|
    iv = forge.util.createBuffer(iv); | 
						|
  } | 
						|
 | 
						|
  if(forge.util.isArray(iv) && iv.length > 4) { | 
						|
    // convert iv byte array into byte buffer | 
						|
    var tmp = iv; | 
						|
    iv = forge.util.createBuffer(); | 
						|
    for(var i = 0; i < tmp.length; ++i) { | 
						|
      iv.putByte(tmp[i]); | 
						|
    } | 
						|
  } | 
						|
 | 
						|
  if(iv.length() < blockSize) { | 
						|
    throw new Error( | 
						|
      'Invalid IV length; got ' + iv.length() + | 
						|
      ' bytes and expected ' + blockSize + ' bytes.'); | 
						|
  } | 
						|
 | 
						|
  if(!forge.util.isArray(iv)) { | 
						|
    // convert iv byte buffer into 32-bit integer array | 
						|
    var ints = []; | 
						|
    var blocks = blockSize / 4; | 
						|
    for(var i = 0; i < blocks; ++i) { | 
						|
      ints.push(iv.getInt32()); | 
						|
    } | 
						|
    iv = ints; | 
						|
  } | 
						|
 | 
						|
  return iv; | 
						|
} | 
						|
 | 
						|
function inc32(block) { | 
						|
  // increment last 32 bits of block only | 
						|
  block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF; | 
						|
} | 
						|
 | 
						|
function from64To32(num) { | 
						|
  // convert 64-bit number to two BE Int32s | 
						|
  return [(num / 0x100000000) | 0, num & 0xFFFFFFFF]; | 
						|
}
 | 
						|
 |